一种基于多任务学习的颈动脉斑块超声图像处理方法

    公开(公告)号:CN115861713A

    公开(公告)日:2023-03-28

    申请号:CN202211718722.1

    申请日:2022-12-29

    Abstract: 本发明涉及一种基于多任务学习的颈动脉斑块超声图像处理方法,包括以下步骤:引入颈动脉斑块超声图像数据集,并进行预处理,得到训练数据集;构建多任务网络框架;添加区域权重模块;添加样本权重模块;将训练数据集作为训练样本输入多任务网络进行训练,在测试集上判定斑块类别和预测斑块分割图像。该基于多任务学习的颈动脉斑块超声图像处理方法,通过对多个任务同时进行训练、共享所学习的特征达到输入一次训练样本解决多个问题的目的,如此,提升了深度学习模型泛化能力,使得任务之间互相联动,促进训练效果,提升分割与分类任务的准确度,解决了在颈动脉斑块超声图像领域深度学习模型泛化能力差,学习特征有限的问题。

Patent Agency Ranking