一种基于深度强化学习的物联网频谱分配优化方法及系统

    公开(公告)号:CN115442812B

    公开(公告)日:2023-04-07

    申请号:CN202211388554.4

    申请日:2022-11-08

    Abstract: 本发明属于工业物联网频谱管理技术领域,具体涉及一种基于深度强化学习的物联网频谱分配优化方法及系统。考虑到全局信道信息未知的情况下,提出一种基于多智能体深度强化学习的工业物联网频谱分配优化方法。首先,构造多个设备对设备通信链路的系统模型。其次,构建优化问题,结合频谱子带和传输功率等约束条件以优化物联网网络综合效率。接着,将优化问题描述为马尔可夫决策过程。最后,针对上述优化问题具有较大的状态空间和动作空间,提出了多智能体深度Q网络算法。借助于经验回放机制和目标网络策略,以实现最优的频谱子带选择和传输功率分配策略。

    一种基于深度强化学习的物联网频谱分配优化方法及系统

    公开(公告)号:CN115442812A

    公开(公告)日:2022-12-06

    申请号:CN202211388554.4

    申请日:2022-11-08

    Abstract: 本发明属于工业物联网频谱管理技术领域,具体涉及一种基于深度强化学习的物联网频谱分配优化方法及系统。考虑到全局信道信息未知的情况下,提出一种基于多智能体深度强化学习的工业物联网频谱分配优化方法。首先,构造多个设备对设备通信链路的系统模型。其次,构建优化问题,结合频谱子带和传输功率等约束条件以优化物联网网络综合效率。接着,将优化问题描述为马尔可夫决策过程。最后,针对上述优化问题具有较大的状态空间和动作空间,提出了多智能体深度Q网络算法。借助于经验回放机制和目标网络策略,以实现最优的频谱子带选择和传输功率分配策略。

Patent Agency Ranking