-
公开(公告)号:CN118899829A
公开(公告)日:2024-11-05
申请号:CN202410936221.3
申请日:2024-07-12
Applicant: 湖北华中电力科技开发有限责任公司 , 国网湖北省电力有限公司
IPC: H02J3/00 , G06N3/0464 , G06N3/0442 , G06N3/042 , G06N3/08 , G06F17/18 , G06F18/25 , G06Q10/04 , G06Q50/06 , G06F18/214 , G06F18/24
Abstract: 本发明提供一种利用GAT‑LSTM&STGCN‑MLP双时空图模型进行电网负载率预测的方法,包括:从数据中台和气象网站获取目标区域负载数据和天气数据;对获取目标区域的负载数据和天气数据进行数据清洗,所述负载数据包括日期、目标区域下乡镇的负载率,天气数据包括日期、目标区域气温;对进行数据清洗后的数据进行特征工程处理,得到若干维度数据;基于GAT‑LSTM时空图算法网络和STGCN‑MLP时空图算法网络构建双时空图多目标算法模型;将所得若干维度数据输入所述建双时空图多目标算法模型进行预测,得到目标区域下属乡镇的负载率预测结果。本发明在各种复杂多变的节日情况下仍能保持稳定预测,增强了模型稳定性。
-
公开(公告)号:CN119539029A
公开(公告)日:2025-02-28
申请号:CN202411482520.0
申请日:2024-10-23
Applicant: 湖北华中电力科技开发有限责任公司 , 国网湖北省电力有限公司
IPC: G06N3/098 , H02J3/00 , G06N3/0442 , G06F30/27 , G06Q50/06
Abstract: 本发明提供一种面向电力系统暂态稳定性的自适应个性化联邦学习方法,包括:利用PSASP电力系统仿真软件生成电力系统仿真数据;数据标准化数据集进行划分;基于处理后的数据构建基础模型LSTM;基于基础模型LSTM进行自适应个性化联邦学习,得到练完成后的个性化模型;将实际电力系统数据作为个性化模型的输入,验证个性化模型的准确性和实用性。本发明允许每个客户端根据不同电力部门数据的独特性,训练出与其数据分布相匹配的个性化模型,增强了模型对本地电网暂态稳定性的预测准确性;通过在多个客户端上并行进行模型训练,有效利用了分布式计算资源,提高了整体训练效率和处理大规模数据集的能力。
-
公开(公告)号:CN118735721A
公开(公告)日:2024-10-01
申请号:CN202410712732.7
申请日:2024-06-04
Applicant: 湖北华中电力科技开发有限责任公司 , 国网湖北省电力有限公司
IPC: G06Q50/06 , H02J3/00 , G06Q10/04 , G06F18/10 , G06N3/045 , G06N3/0464 , G06N3/0442
Abstract: 一种利用GAT‑BILSTM&CNN‑LSTM模型提高多目标误差均衡度的方法,包括:获取目标区域的负载数据和气温数据;对负载数据和气温数据进行数据清洗;对数据清洗后的数据进行特征工程处理得到历史数据;设置GAT‑BILSTM算法网络和设置CNN‑LSTM算法网络;模型组合:使用GAT‑BILSTM对历史数据进行训练,算出目标区域负载率预测变量的每个预测误差,再算出平均误差,其次将超出平均误差的负载率预测变量与CNN‑LSTM的结果进行组合,组合的方式是采用误差倒数法进行加权,剩下的负载率预测变量则保持不变输出结果。本发明可解决多目标预测模型中各个目标预测误差的相差过大的问题,同时尽可能减小整体误差。
-
公开(公告)号:CN119557795A
公开(公告)日:2025-03-04
申请号:CN202411482397.2
申请日:2024-10-23
Applicant: 湖北华中电力科技开发有限责任公司 , 国网湖北省电力有限公司
IPC: G06F18/2433 , G06F18/23213 , G06Q50/06
Abstract: 本发明提供一种时序聚类模型R‑kshape用于异常电量检测的方法,包括:获取数据集,所述数据集包括:机组ID,日期,时刻,上网电量;对获取的数据集进行数据预处理,所述预处理包括缺失值处理、删除零点电量的数据以及重排序;对进行预处理后的数据集进行特征工程,构建衍生变量;基于构建的衍生变量建立R‑kshape模型,所述R‑kshape模型由规则策略和kshape通过逻辑关联融合而成;基于构建的R‑kshape模型进行异常电量检测。本发明以时序聚类算法Kshape为基础,融合了规则策略(Rule)而成一种全新改进模型,所需样本数量少,同时对比纯规则、纯聚类的异常电量检测,有着更精准更高效的识别效果。
-
公开(公告)号:CN118520428B
公开(公告)日:2024-10-18
申请号:CN202410977249.1
申请日:2024-07-22
Applicant: 湖北华中电力科技开发有限责任公司
IPC: G06F18/27 , G06F18/214 , G06F18/10 , G06Q50/06 , H02J3/00
Abstract: 本发明涉及电力负荷预测领域,更具体地,本发明涉及一种基于人工智能的电力负荷预测方法及系统,所述方法包括:对获取的历史电力负荷数据段中的负荷数据进行拟合,确定拟合曲线的极值点,然后计算历史电力负荷数据段的初始噪声程度,并对应的历史电网频率数据段的初始噪声程度,以及历史电力负荷数据段与对应的历史电网频率数据段之间的相关性对初始噪声程度进行修正,得到历史电力负荷数据段的最终噪声程度,以利用每个历史电力负荷数据段的最终噪声程度对由对应的历史电力负荷数据段确定的预测值进行加权,得到最终预测值。本发明可以降低噪声数据对预测结果的影响,提高了对电力负荷量预测的准确性。
-
公开(公告)号:CN118520428A
公开(公告)日:2024-08-20
申请号:CN202410977249.1
申请日:2024-07-22
Applicant: 湖北华中电力科技开发有限责任公司
IPC: G06F18/27 , G06F18/214 , G06F18/10 , G06Q50/06 , H02J3/00
Abstract: 本发明涉及电力负荷预测领域,更具体地,本发明涉及一种基于人工智能的电力负荷预测方法及系统,所述方法包括:对获取的历史电力负荷数据段中的负荷数据进行拟合,确定拟合曲线的极值点,然后计算历史电力负荷数据段的初始噪声程度,并对应的历史电网频率数据段的初始噪声程度,以及历史电力负荷数据段与对应的历史电网频率数据段之间的相关性对初始噪声程度进行修正,得到历史电力负荷数据段的最终噪声程度,以利用每个历史电力负荷数据段的最终噪声程度对由对应的历史电力负荷数据段确定的预测值进行加权,得到最终预测值。本发明可以降低噪声数据对预测结果的影响,提高了对电力负荷量预测的准确性。
-
-
-
-
-