-
公开(公告)号:CN115982534A
公开(公告)日:2023-04-18
申请号:CN202310263950.2
申请日:2023-03-18
申请人: 湖北一方科技发展有限责任公司
IPC分类号: G06F17/16 , G06F18/214 , G06F18/24 , G06N3/04 , G06N3/0442 , G06N3/084
摘要: 本发明涉及水文数据处理技术领域,公开了一种江河水文监测数据的处理方法,包括:步骤101,生成第一训练集;步骤102,通过第一训练集对第一神经网络模型进行训练;步骤103,生成第二训练集;步骤104,通过第二训练集对LSTM神经网络进行训练;步骤105,将步骤102训练完成的第一神经网络模型与LSTM神经网络获得异构神经网络;步骤106,将待预测样本的数据输入异构神经网络,基于异构神经网络输出预测待预测样本对应的江河区域预测时间之后的候鸟数量;本发明通过预先训练的异构的两类神经网络进行组合获得异构神经网络,通过决策层来对最终进行预测的LSTM神经网络部分的输入池进行处理,基于深度学习的手段来实现对于内陆江河候鸟数量的准确预测。
-
公开(公告)号:CN115982534B
公开(公告)日:2023-05-26
申请号:CN202310263950.2
申请日:2023-03-18
申请人: 湖北一方科技发展有限责任公司
IPC分类号: G06F17/16 , G06F18/214 , G06F18/24 , G06N3/04 , G06N3/0442 , G06N3/084
摘要: 本发明涉及水文数据处理技术领域,公开了一种江河水文监测数据的处理方法,包括:步骤101,生成第一训练集;步骤102,通过第一训练集对第一神经网络模型进行训练;步骤103,生成第二训练集;步骤104,通过第二训练集对LSTM神经网络进行训练;步骤105,将步骤102训练完成的第一神经网络模型与LSTM神经网络获得异构神经网络;步骤106,将待预测样本的数据输入异构神经网络,基于异构神经网络输出预测待预测样本对应的江河区域预测时间之后的候鸟数量;本发明通过预先训练的异构的两类神经网络进行组合获得异构神经网络,通过决策层来对最终进行预测的LSTM神经网络部分的输入池进行处理,基于深度学习的手段来实现对于内陆江河候鸟数量的准确预测。
-