一种江河水文监测数据的处理方法

    公开(公告)号:CN115982534A

    公开(公告)日:2023-04-18

    申请号:CN202310263950.2

    申请日:2023-03-18

    摘要: 本发明涉及水文数据处理技术领域,公开了一种江河水文监测数据的处理方法,包括:步骤101,生成第一训练集;步骤102,通过第一训练集对第一神经网络模型进行训练;步骤103,生成第二训练集;步骤104,通过第二训练集对LSTM神经网络进行训练;步骤105,将步骤102训练完成的第一神经网络模型与LSTM神经网络获得异构神经网络;步骤106,将待预测样本的数据输入异构神经网络,基于异构神经网络输出预测待预测样本对应的江河区域预测时间之后的候鸟数量;本发明通过预先训练的异构的两类神经网络进行组合获得异构神经网络,通过决策层来对最终进行预测的LSTM神经网络部分的输入池进行处理,基于深度学习的手段来实现对于内陆江河候鸟数量的准确预测。

    一种江河水文监测数据的处理方法

    公开(公告)号:CN115982534B

    公开(公告)日:2023-05-26

    申请号:CN202310263950.2

    申请日:2023-03-18

    摘要: 本发明涉及水文数据处理技术领域,公开了一种江河水文监测数据的处理方法,包括:步骤101,生成第一训练集;步骤102,通过第一训练集对第一神经网络模型进行训练;步骤103,生成第二训练集;步骤104,通过第二训练集对LSTM神经网络进行训练;步骤105,将步骤102训练完成的第一神经网络模型与LSTM神经网络获得异构神经网络;步骤106,将待预测样本的数据输入异构神经网络,基于异构神经网络输出预测待预测样本对应的江河区域预测时间之后的候鸟数量;本发明通过预先训练的异构的两类神经网络进行组合获得异构神经网络,通过决策层来对最终进行预测的LSTM神经网络部分的输入池进行处理,基于深度学习的手段来实现对于内陆江河候鸟数量的准确预测。

    一种高维水文数据处理系统及方法

    公开(公告)号:CN116580302A

    公开(公告)日:2023-08-11

    申请号:CN202310517216.4

    申请日:2023-05-09

    摘要: 本发明涉及水文数据处理技术领域,公开了一种高维水文数据处理系统及方法,其中,一种高维水文数据处理方法包括以下步骤:步骤101,基于水文图像生成图像体素,提取属于水体的图像体素生成第一图像体素集合;步骤102,生成图像提取空间,通过图像提取空间提取第一图像体素集合内的体素来生成第一图像特征;步骤103,通过特征卷积模型对第一图像特征进行处理;本发明通过水文图像的空间区域化处理和特征提取来减少非水域的信息维度,并且对水域区域特征进行区域化;本发明采用特征卷积模型对区域化处理的水域图像特征进行处理,能够综合水域的区域流动性和时间上的动态变化,获取水域污染状态,并判断污染的源头。