驾驶数据采集与标定方法、装置及存储介质

    公开(公告)号:CN116186336B

    公开(公告)日:2024-08-16

    申请号:CN202310187644.5

    申请日:2023-03-01

    Abstract: 本申请提供一种驾驶数据采集与标定方法、装置及存储介质。所述方法包括:在车辆处于自然驾驶状态的情况下,实时采集驾驶数据;将所采集的驾驶数据进行按照时序进行对齐,并将对齐后的所述驾驶数据组织为树状结构;对所述驾驶数据进行人车路数据耦合标定,形成标定后的所述驾驶数据。本申请实施例通过对车辆处于自然驾驶状态下的驾驶数据进行耦合标定,形成人车路在环一体化数据标定后所述驾驶数据,而且这些驾驶数据具有统一的数据结构,具备兼容性和可拓展性。

    基于图论的城市多车对抗场景建模方法及装置

    公开(公告)号:CN117875083A

    公开(公告)日:2024-04-12

    申请号:CN202410189153.9

    申请日:2024-02-20

    Applicant: 清华大学

    Abstract: 本申请涉及一种基于图论的城市多车对抗场景建模方法及装置,其中,方法包括:提取目标对抗场景的收益要素和代价要素,并基于收益要素和代价要素,构建目标对抗场景的数学模型;获取目标对抗场景中的道路环境信息和对抗双方的节点信息,并基于数学模型,对道路环境信息和节点信息进行建模,生成目标对抗场景的图论模型;获取对抗双方中我方节点的状态信息以及对方节点的方向特性信息和收益特性信息,并根据方向特性信息、收益特性信息、状态信息和预设分层策略优化图论模型,以构建目标对抗场景的图论优化模型。由此,解决了现有建模方法对路网信息、环境威胁信息、双方单位多维信息建模能力不强,优化目标考虑因素较少等问题。

    基于图论的城市多车对抗场景建模方法及装置

    公开(公告)号:CN117875083B

    公开(公告)日:2024-09-24

    申请号:CN202410189153.9

    申请日:2024-02-20

    Applicant: 清华大学

    Abstract: 本申请涉及一种基于图论的城市多车对抗场景建模方法及装置,其中,方法包括:提取目标对抗场景的收益要素和代价要素,并基于收益要素和代价要素,构建目标对抗场景的数学模型;获取目标对抗场景中的道路环境信息和对抗双方的节点信息,并基于数学模型,对道路环境信息和节点信息进行建模,生成目标对抗场景的图论模型;获取对抗双方中我方节点的状态信息以及对方节点的方向特性信息和收益特性信息,并根据方向特性信息、收益特性信息、状态信息和预设分层策略优化图论模型,以构建目标对抗场景的图论优化模型。由此,解决了现有建模方法对路网信息、环境威胁信息、双方单位多维信息建模能力不强,优化目标考虑因素较少等问题。

    高风险场景下驾驶人风险响应与主动决策方法及装置

    公开(公告)号:CN116968730B

    公开(公告)日:2024-03-19

    申请号:CN202310755780.X

    申请日:2023-06-25

    Applicant: 清华大学

    Abstract: 本申请涉及一种高风险场景下驾驶人风险响应与主动决策方法及装置,包括:根据所获取的满足风险条件的场景下多个驾驶人眼动的时空特征信息,确定多个驾驶人的视觉注意特性,基于根据视觉注意特性和视网膜成像原理确定的多个驾驶人风险认知的感知特性,获取多个驾驶人风险认知的视觉注意力累积信息,根据基于视觉注意力累积信息所构建的表征驾驶人决策操纵行为的驾驶人漂移扩散决策模型,量化输出每个驾驶人驾驶过程风险响应和主动决策。由此,解决现有模型应用过程中难以充分解释人类风险认知行为产生机理,且未量化道路条件和车辆属性等因素对驾驶人风险响应与主动决策产生的影响等问题,对实现个性化自动驾驶、促进道路交通安全具有重要意义。

    基于图神经网络的交通场景泛化理解方法及装置

    公开(公告)号:CN116245183A

    公开(公告)日:2023-06-09

    申请号:CN202310184279.2

    申请日:2023-02-28

    Applicant: 清华大学

    Abstract: 本申请涉及一种基于图神经网络的交通场景泛化理解方法及装置,其中,方法包括:获取原始交通场景智能体信息;基于原始交通场景智能体信息,构建子图节点和对应的特征向量并编码,生成经过编码的节点特征向量;利用经过编码的节点特征向量,构建动态有向图,并通过图卷积神经网络训练得到节点之间边的参数向量,以体现交通场景中各智能体以及环境之间的相互作用,形成场景理解图。由此,解决了相关技术中,基于物理规则指标的方法评价标准过于单一,无法处理复杂交互场景,基于大数据分布的统计方法时效性差,应对突发的交通事件无法做出实时评估,基于交互物理模型的方法需要针对特定场景进行参数调优与设计,不具备场景泛化性等问题。

    驾驶数据采集与标定方法、装置及存储介质

    公开(公告)号:CN116186336A

    公开(公告)日:2023-05-30

    申请号:CN202310187644.5

    申请日:2023-03-01

    Abstract: 本申请提供一种驾驶数据采集与标定方法、装置及存储介质。所述方法包括:在车辆处于自然驾驶状态的情况下,实时采集驾驶数据;将所采集的驾驶数据进行按照时序进行对齐,并将对齐后的所述驾驶数据组织为树状结构;对所述驾驶数据进行人车路数据耦合标定,形成标定后的所述驾驶数据。本申请实施例通过对车辆处于自然驾驶状态下的驾驶数据进行耦合标定,形成人车路在环一体化数据标定后所述驾驶数据,而且这些驾驶数据具有统一的数据结构,具备兼容性和可拓展性。

    基于图神经网络的交通场景泛化理解方法及装置

    公开(公告)号:CN116245183B

    公开(公告)日:2023-11-07

    申请号:CN202310184279.2

    申请日:2023-02-28

    Applicant: 清华大学

    Abstract: 本申请涉及一种基于图神经网络的交通场景泛化理解方法及装置,其中,方法包括:获取原始交通场景智能体信息;基于原始交通场景智能体信息,构建子图节点和对应的特征向量并编码,生成经过编码的节点特征向量;利用经过编码的节点特征向量,构建动态有向图,并通过图卷积神经网络训练得到节点之间边的参数向量,以体现交通场景中各智能体以及环境之间的相互作用,形成场景理解图。由此,解决了相关技术中,基于物理规则指标的方法评价标准过于单一,无法处理复杂交互场景,基于大数据分布的统计方法时效性差,应对突发的交通事件无法做出实时评估,基于交互物理模型的方法需要针对特定场景进行参数调优与设计,不具备场景泛化性等问题。

    高风险场景下驾驶人风险响应与主动决策方法及装置

    公开(公告)号:CN116968730A

    公开(公告)日:2023-10-31

    申请号:CN202310755780.X

    申请日:2023-06-25

    Applicant: 清华大学

    Abstract: 本申请涉及一种高风险场景下驾驶人风险响应与主动决策方法及装置,包括:根据所获取的满足风险条件的场景下多个驾驶人眼动的时空特征信息,确定多个驾驶人的视觉注意特性,基于根据视觉注意特性和视网膜成像原理确定的多个驾驶人风险认知的感知特性,获取多个驾驶人风险认知的视觉注意力累积信息,根据基于视觉注意力累积信息所构建的表征驾驶人决策操纵行为的驾驶人漂移扩散决策模型,量化输出每个驾驶人驾驶过程风险响应和主动决策。由此,解决现有模型应用过程中难以充分解释人类风险认知行为产生机理,且未量化道路条件和车辆属性等因素对驾驶人风险响应与主动决策产生的影响等问题,对实现个性化自动驾驶、促进道路交通安全具有重要意义。

Patent Agency Ranking