一种基于多步学习的三维核磁共振胰腺图像分割方法

    公开(公告)号:CN109636806B

    公开(公告)日:2022-12-27

    申请号:CN201811399318.6

    申请日:2018-11-22

    Abstract: 本发明公开了一种基于多步学习的三维核磁共振胰腺图像分割方法,包括:(1)归一化预处理三维核磁共振图像;(2)随机将预处理后的图像分为训练集、验证集和测试集;(3)利用分割标注将训练集中包含胰腺的块和对应的标注切出备用;(4)压缩原始图像训练一个Q‑net模型计算胰腺大致位置;(5)使用步骤3中的配对数据预训练另一个P‑net模型;(6)使用预训练的Q‑net产生胰腺的3D位置预测图,选取概率高的图块,映射回原图,分块输入预训练的P‑net中合并训练预测胰腺位置;(7)使用训练好的分割模型在测试集上进行预测检测效果。利用本发明,能够精确地从三维的核磁共振图像中分割出胰腺,可为胰腺的放射治疗提供依据和指导。

    一种基于边信息的体检数据补全方法、装置及应用

    公开(公告)号:CN109658996B

    公开(公告)日:2020-08-18

    申请号:CN201811416427.4

    申请日:2018-11-26

    Abstract: 本发明公开了一种基于边信息的体检数据补全方法,包括(1)构建和根据边信息补全体检‑疾病矩阵、致病因子‑疾病矩阵、致病因子‑体检矩阵;(2)分别在任意两个矩阵之间建立编码解码网络D2F Net,D2C Net以及F2C Net;(3)联合训练D2F Net,D2C Net以及F2C Net,训练结束,致病因子‑疾病矩阵和致病因子‑体检矩阵已经被补全;(4)将待补全的体检‑疾病矩阵输入到D2F Net,D2C Net中,利用补全的致病因子‑疾病矩阵、致病因子‑体检矩阵和F2C Net,经计算补全体检‑疾病矩阵。还公开了一种基于边信息的体检数据补全装置,能够根据已有信息来补全体检数据和疾病结果。

    一种基于边信息的体检数据补全方法、装置及应用

    公开(公告)号:CN109658996A

    公开(公告)日:2019-04-19

    申请号:CN201811416427.4

    申请日:2018-11-26

    Abstract: 本发明公开了一种基于边信息的体检数据补全方法,包括(1)构建和根据边信息补全体检-疾病矩阵、致病因子-疾病矩阵、致病因子-体检矩阵;(2)分别在任意两个矩阵之间建立编码解码网络D2F Net,D2C Net以及F2C Net;(3)联合训练D2F Net,D2C Net以及F2C Net,训练结束,致病因子-疾病矩阵和致病因子-体检矩阵已经被补全;(4)将待补全的体检-疾病矩阵输入到D2F Net,D2C Net中,利用补全的致病因子-疾病矩阵、致病因子-体检矩阵和F2C Net,经计算补全体检-疾病矩阵。还公开了一种基于边信息的体检数据补全装置,能够根据已有信息来补全体检数据和疾病结果。

Patent Agency Ranking