-
公开(公告)号:CN112765219A
公开(公告)日:2021-05-07
申请号:CN202110137315.0
申请日:2021-02-01
IPC: G06F16/2455 , G06K9/62
Abstract: 本发明公开了一种跳过平稳区域的流数据异常检测方法,通过对窗口中的数据空间进行网格单元划分,得到非空网格单元;在窗口滑动过程中,以非空网格单元的权重累积净变作为区域内数据密度变化程度的度量,跳过更新相对平稳数据区域中数据点的局部可达密度和局部异常因子;仅将含有估计点的θK最近邻点的区域用于估计局部异常因子,减少对不必要的数据点进行遍历。最后通过非空网格单元中局部异常异常因子的上下界实现非空网格单元和数据点两个层级的异常检测,即首先识别出包含有前n个异常值的非空网格单元,再检索出前n个异常数据点。本发明解决现有算法难以有效处理大量流数据的难题,使桥梁健康监测系统能高效准确地识别异常数据,以便维护桥梁的健康安全。
-
公开(公告)号:CN112765219B
公开(公告)日:2022-04-29
申请号:CN202110137315.0
申请日:2021-02-01
IPC: G06F16/2455 , G06K9/62
Abstract: 本发明公开了一种跳过平稳区域的流数据异常检测方法,通过对窗口中的数据空间进行网格单元划分,得到非空网格单元;在窗口滑动过程中,以非空网格单元的权重累积净变作为区域内数据密度变化程度的度量,跳过更新相对平稳数据区域中数据点的局部可达密度和局部异常因子;仅将含有估计点的θK最近邻点的区域用于估计局部异常因子,减少对不必要的数据点进行遍历。最后通过非空网格单元中局部异常异常因子的上下界实现非空网格单元和数据点两个层级的异常检测,即首先识别出包含有前n个异常值的非空网格单元,再检索出前n个异常数据点。本发明解决现有算法难以有效处理大量流数据的难题,使桥梁健康监测系统能高效准确地识别异常数据,以便维护桥梁的健康安全。
-
公开(公告)号:CN118194088A
公开(公告)日:2024-06-14
申请号:CN202410297915.7
申请日:2024-03-15
Applicant: 浙江大学
IPC: G06F18/24 , G06F18/213 , G06Q30/018 , G06N3/0464 , G06N3/048 , G06N3/08
Abstract: 本发明公开了一种融合图扩散卷积与分组聚合特征的欺诈识别方法和装置。该方法包括提取原图结构,对原图进行图结构增强获得两跳图,输入到分类模型,包括对图按照关系类型划分关系子图,对各关系子图做特征分组聚合,对各关系子图分组聚合后的特征做图扩散卷积,再将各关系子图扩散卷积后的特征做关系聚合得到最终特征并通过全连接层输出预测结果。本发明的图扩散卷积除了聚合原图的分组邻域节点特征,还聚合了图结构增强生成的二跳图的分组邻域节点特征,充分利用了图的结构信息,关系信息,分组信息。本发明在欺诈检测领域的应用,能有效提高对欺诈的识别能力,有很大的实用价值。
-
公开(公告)号:CN118194088B
公开(公告)日:2025-03-28
申请号:CN202410297915.7
申请日:2024-03-15
Applicant: 浙江大学
IPC: G06F18/24 , G06F18/213 , G06Q30/018 , G06N3/0464 , G06N3/048 , G06N3/08
Abstract: 本发明公开了一种融合图扩散卷积与分组聚合特征的欺诈识别方法和装置。该方法包括提取原图结构,对原图进行图结构增强获得两跳图,输入到分类模型,包括对图按照关系类型划分关系子图,对各关系子图做特征分组聚合,对各关系子图分组聚合后的特征做图扩散卷积,再将各关系子图扩散卷积后的特征做关系聚合得到最终特征并通过全连接层输出预测结果。本发明的图扩散卷积除了聚合原图的分组邻域节点特征,还聚合了图结构增强生成的二跳图的分组邻域节点特征,充分利用了图的结构信息,关系信息,分组信息。本发明在欺诈检测领域的应用,能有效提高对欺诈的识别能力,有很大的实用价值。
-
-
-