-
公开(公告)号:CN112381168B
公开(公告)日:2022-04-01
申请号:CN202011318081.1
申请日:2020-11-23
Applicant: 浙江大学 , 浙江大学滨海产业技术研究院
IPC: G06V10/764 , G06V10/774 , G06V10/26 , G06V10/82 , G06N3/04 , G06T11/00
Abstract: 基于单样例引导物体表征拆分的图像编辑算法,包括下列步骤:1)基于单样例的监督模块构建;2)单样例引导下的自监督模块中的对偶策略构建;3)单样例引导下的自监督模块中的模糊分类策略构建4)基于单样例标注图像引导物体表征拆分的图像编辑。通过上述步骤建立的基于单样例引导物体表征拆分的图像编辑算法,只需要为每一类别图像标注一个样本形成单样例样本,利用单样例样本引导大量无标注数据训练的方式,通过单样例的监督模块和单样例引导无标注数据的自监督模块,实现复杂场景的前景物体和背景表征拆分,使得在图像表征空间即可直接操作图像,轻松实现相关图像编辑任务。
-
公开(公告)号:CN112381168A
公开(公告)日:2021-02-19
申请号:CN202011318081.1
申请日:2020-11-23
Applicant: 浙江大学 , 浙江大学滨海产业技术研究院
Abstract: 基于单样例引导物体表征拆分的图像编辑算法,包括下列步骤:1)基于单样例的监督模块构建;2)单样例引导下的自监督模块中的对偶策略构建;3)单样例引导下的自监督模块中的模糊分类策略构建4)基于单样例标注图像引导物体表征拆分的图像编辑。通过上述步骤建立的基于单样例引导物体表征拆分的图像编辑算法,只需要为每一类别图像标注一个样本形成单样例样本,利用单样例样本引导大量无标注数据训练的方式,通过单样例的监督模块和单样例引导无标注数据的自监督模块,实现复杂场景的前景物体和背景表征拆分,使得在图像表征空间即可直接操作图像,轻松实现相关图像编辑任务。
-