-
公开(公告)号:CN118570065B
公开(公告)日:2024-12-03
申请号:CN202411017322.7
申请日:2024-07-29
Applicant: 济南大学 , 山东青鸟工业互联网有限公司
IPC: G06T3/4053 , G06T3/4046 , G06T5/50 , G06N3/045 , G06N3/0464 , G06N3/08
Abstract: 本发明提出了基于双通道残差注意力的汽车零部件图像超分辨率方法,涉及计算机视觉领域,本发明提出的多层次残差注意力网络由N个双通道残差注意力块和一个特征融合层组成,双通道残差注意力块包含两个并行分支,分别提取输入图像的局部特征和全局特征,同时引入残差连接提高图像特征的稳定性,减少梯度消失和梯度爆炸的问题,最后将初始图像特征和所有双通道残差注意力块的输出进行融合,增强特征表达能力,提升训练效果。
-
公开(公告)号:CN118097321B
公开(公告)日:2024-09-27
申请号:CN202410524655.2
申请日:2024-04-29
Applicant: 济南大学
IPC: G06V10/764 , G06V10/80 , G06V10/82
Abstract: 本发明提出了基于CNN和Transformer的车辆图像增强方法及系统,涉及计算机视觉领域。本发明提出一种特征调制Transformer模块,模块由L个交叉精炼融合块组成,每个交叉精炼融合块由高频增强残差块、矩形窗口注意力块、混合融合块组成。其中,高频增强残差块用于从输入特征中提取高频特征,矩形窗口注意力块用于捕捉输入特征的长距离依赖关系,然后通过混合融合块整合高频增强残差块和矩形窗口注意力块的输出。最后交叉提炼全局特征以获得最佳效果。
-
公开(公告)号:CN118570065A
公开(公告)日:2024-08-30
申请号:CN202411017322.7
申请日:2024-07-29
Applicant: 济南大学 , 山东青鸟工业互联网有限公司
IPC: G06T3/4053 , G06T3/4046 , G06T5/50 , G06N3/045 , G06N3/0464 , G06N3/08
Abstract: 本发明提出了基于双通道残差注意力的汽车零部件图像超分辨率方法,涉及计算机视觉领域,本发明提出的多层次残差注意力网络由N个双通道残差注意力块和一个特征融合层组成,双通道残差注意力块包含两个并行分支,分别提取输入图像的局部特征和全局特征,同时引入残差连接提高图像特征的稳定性,减少梯度消失和梯度爆炸的问题,最后将初始图像特征和所有双通道残差注意力块的输出进行融合,增强特征表达能力,提升训练效果。
-
公开(公告)号:CN118097321A
公开(公告)日:2024-05-28
申请号:CN202410524655.2
申请日:2024-04-29
Applicant: 济南大学
IPC: G06V10/764 , G06V10/80 , G06V10/82
Abstract: 本发明提出了基于CNN和Transformer的车辆图像增强方法及系统,涉及计算机视觉领域。本发明提出一种特征调制Transformer模块,模块由L个交叉精炼融合块组成,每个交叉精炼融合块由高频增强残差块、矩形窗口注意力块、混合融合块组成。其中,高频增强残差块用于从输入特征中提取高频特征,矩形窗口注意力块用于捕捉输入特征的长距离依赖关系,然后通过混合融合块整合高频增强残差块和矩形窗口注意力块的输出。最后交叉提炼全局特征以获得最佳效果。
-
-
-