-
公开(公告)号:CN115035299B
公开(公告)日:2023-06-13
申请号:CN202210697730.6
申请日:2022-06-20
Applicant: 河南大学
IPC: G06V10/26 , G06V10/82 , G06V10/42 , G06V10/80 , G06N3/0464
Abstract: 本发明公开一种基于深度学习的改进型城市街景图像分割方法,包括:基于深度学习的改进型城市街景图像分割模型DEEPLS:使用编码解码的框架和ResNet101作为骨干网络,在ASPP模块中新增一层膨胀率为3的空洞卷积,合并之后的6层用并行的3×3卷积处理之后再用1×1卷积调整通道数,得到的特征图先2倍上采样,输入到CBAM注意力机制再2倍上采样,最后和经过CBAM注意力机制的浅层特征拼接融合得到预测图;基于改进型城市街景图像分割模型DEEPLS对城市街景图像进行分割。本发明能获取更精细的前景细节信息,提升城市街景图像分割效果。
-
公开(公告)号:CN114677234B
公开(公告)日:2024-04-30
申请号:CN202210445519.5
申请日:2022-04-26
Applicant: 河南大学
IPC: G06Q50/00 , G06N3/0464 , G06N3/042 , G06N3/08
Abstract: 本发明提出一种融合多通道注意力机制的图卷积神经网络社交推荐方法及系统,通过以下工作,提升社交推荐的效果:一、学习节点特征和拓扑结构节点嵌入的同时,学习两者组合的节点嵌入,得到了它们的共同特性,缓解了对单一特征的过分依赖的问题。二、通过学习拓扑结构的散射嵌入,实现了不同信号的带通过滤,减轻了过平滑现象。三、结合注意力机制,对相关信息进行融合。实验结果表明,与其他算法相比,本发明提出的方法及系统在多个社交网络数据集上性能得以提升,本发明也为后续的研究提供了新的思路。
-
公开(公告)号:CN114677234A
公开(公告)日:2022-06-28
申请号:CN202210445519.5
申请日:2022-04-26
Applicant: 河南大学
Abstract: 本发明提出一种融合多通道注意力机制的图卷积神经网络社交推荐方法及系统,通过以下工作,提升社交推荐的效果:一、学习节点特征和拓扑结构节点嵌入的同时,学习两者组合的节点嵌入,得到了它们的共同特性,缓解了对单一特征的过分依赖的问题。二、通过学习拓扑结构的散射嵌入,实现了不同信号的带通过滤,减轻了过平滑现象。三、结合注意力机制,对相关信息进行融合。实验结果表明,与其他算法相比,本发明提出的方法及系统在多个社交网络数据集上性能得以提升,本发明也为后续的研究提供了新的思路。
-
公开(公告)号:CN115035299A
公开(公告)日:2022-09-09
申请号:CN202210697730.6
申请日:2022-06-20
Applicant: 河南大学
Abstract: 本发明公开一种基于深度学习的改进型城市街景图像分割方法,包括:基于深度学习的改进型城市街景图像分割模型DEEPLS:使用编码解码的框架和ResNet101作为骨干网络,在ASPP模块中新增一层膨胀率为3的空洞卷积,合并之后的6层用并行的3×3卷积处理之后再用1×1卷积调整通道数,得到的特征图先2倍上采样,输入到CBAM注意力机制再2倍上采样,最后和经过CBAM注意力机制的浅层特征拼接融合得到预测图;基于改进型城市街景图像分割模型DEEPLS对城市街景图像进行分割。本发明能获取更精细的前景细节信息,提升城市街景图像分割效果。
-
-
-