-
公开(公告)号:CN113177937B
公开(公告)日:2022-09-13
申请号:CN202110568000.1
申请日:2021-05-24
Applicant: 河南大学
Abstract: 本发明提供一种基于改进YOLOv4‑tiny的布匹缺陷检测模型及方法。该检测模型在YOLOv4‑tiny主干网络中的残差块加入密集连接卷积块CSPDenseBlock,并在主干网络最后加入spp模块,形成新的特征提取网络;新的所述特征提取网络输出两种不同尺度的特征图;两种不同尺度的特征图分别通过各自对应的卷积块处理后进入各自的YOLO层对目标进行预测。本发明通过在其原来的残差块中加入密集连接卷积块对主干网络进行调整,扩充了检测模型的神经元感受野有助于浅层信息的提取;使用密集卷积块构造较深的主干网络框架,有助于识别多个难以区分的目标,增加模型检测的准确性;整个模型可用于对复杂场景下布匹缺陷检测任务的优化,并且检测精度较传统的模型更好。
-
公开(公告)号:CN113177937A
公开(公告)日:2021-07-27
申请号:CN202110568000.1
申请日:2021-05-24
Applicant: 河南大学
Abstract: 本发明提供一种基于改进YOLOv4‑tiny的布匹缺陷检测模型及方法。该检测模型在YOLOv4‑tiny主干网络中的残差块加入密集连接卷积块CSPDenseBlock,并在主干网络最后加入spp模块,形成新的特征提取网络;新的所述特征提取网络输出两种不同尺度的特征图;两种不同尺度的特征图分别通过各自对应的卷积块处理后进入各自的YOLO层对目标进行预测。本发明通过在其原来的残差块中加入密集连接卷积块对主干网络进行调整,扩充了检测模型的神经元感受野有助于浅层信息的提取;使用密集卷积块构造较深的主干网络框架,有助于识别多个难以区分的目标,增加模型检测的准确性;整个模型可用于对复杂场景下布匹缺陷检测任务的优化,并且检测精度较传统的模型更好。
-