-
公开(公告)号:CN111553433B
公开(公告)日:2023-04-18
申请号:CN202010364878.9
申请日:2020-04-30
Applicant: 河北工业大学
IPC: G06V10/764 , G06T7/00 , G06V10/774 , G06V10/80 , G06V10/82 , G06N3/0464 , G06N3/088 , G01N21/88
Abstract: 本发明公开一种基于多尺度卷积特征融合网络的锂电池缺陷分类方法,该方法基于多尺度卷积特征融合网络模型,该模型引入了跨通道深度卷积,分别在原始图像的三通道上进行卷积,加强了模型的光谱不变性。还引入了具有不同感受野大小的多尺度卷积,加强了模型多尺度特征表达能力。对于每张图片都提取三通道及其标签作为模型输入值进行训练,同时还引入maxout刺激了不同神经元之间的竞争,提高了网络的学习能力,增强模型的非线性拟合能力,大幅提升了网络在多类别锂电池片表面缺陷数据集上的分类精确度及速度。
-
公开(公告)号:CN111784770A
公开(公告)日:2020-10-16
申请号:CN202010595948.1
申请日:2020-06-28
Applicant: 河北工业大学
Abstract: 本发明涉及基于SHOT和ICP算法的无序抓取中的三维姿态估计方法,该方法用于无序抓取过程中的物体位姿估计,以SHOT粗匹配方法为ICP精配准提供良好的初始位置,SHOT算法中M矩阵的构建,特征值分解,进而构建局部参考系;计算对应参考系下的拓扑特征,并将结果保存在直方图中,再对模型和场景点云对应的特征提取结果进行霍夫变换,剔除错误点对,解算得到最终的粗配准姿态估计结果;ICP算法最近点的寻找,协方差矩阵的构建以及使目标函数最小化的旋转矩阵和平移向量的求解,解决了传统ICP应用于由于工件反光,采集到存在孔洞的点云时,配准精度下降的问题。
-
公开(公告)号:CN111553433A
公开(公告)日:2020-08-18
申请号:CN202010364878.9
申请日:2020-04-30
Applicant: 河北工业大学
Abstract: 本发明公开一种基于多尺度卷积特征融合网络的锂电池缺陷分类方法,该方法基于多尺度卷积特征融合网络模型,该模型引入了跨通道深度卷积,分别在原始图像的三通道上进行卷积,加强了模型的光谱不变性。还引入了具有不同感受野大小的多尺度卷积,加强了模型多尺度特征表达能力。对于每张图片都提取三通道及其标签作为模型输入值进行训练,同时还引入maxout刺激了不同神经元之间的竞争,提高了网络的学习能力,增强模型的非线性拟合能力,大幅提升了网络在多类别锂电池片表面缺陷数据集上的分类精确度及速度。
-
公开(公告)号:CN111784770B
公开(公告)日:2022-04-01
申请号:CN202010595948.1
申请日:2020-06-28
Applicant: 河北工业大学
Abstract: 本发明涉及基于SHOT和ICP算法的无序抓取中的三维姿态估计方法,该方法用于无序抓取过程中的物体位姿估计,以SHOT粗匹配方法为ICP精配准提供良好的初始位置,SHOT算法中M矩阵的构建,特征值分解,进而构建局部参考系;计算对应参考系下的拓扑特征,并将结果保存在直方图中,再对模型和场景点云对应的特征提取结果进行霍夫变换,剔除错误点对,解算得到最终的粗配准姿态估计结果;ICP算法最近点的寻找,协方差矩阵的构建以及使目标函数最小化的旋转矩阵和平移向量的求解,解决了传统ICP应用于由于工件反光,采集到存在孔洞的点云时,配准精度下降的问题。
-
-
-