-
公开(公告)号:CN119006916B
公开(公告)日:2025-04-11
申请号:CN202411124405.6
申请日:2024-08-16
Applicant: 江苏省人民医院(南京医科大学第一附属医院) , 南京邮大医疗信息技术有限公司
IPC: G06V10/764 , G06V10/80 , G06V10/82 , G06N3/0464 , G06N3/08 , G06T7/00
Abstract: 本发明属于医学图像处理技术领域,具体涉及基于YOLOv8的原发性中枢神经系统淋巴瘤检测分类方法及系统,包括:收集原发性中枢神经系统弥漫大B细胞淋巴瘤、颅内转移瘤、胶质母细胞瘤患者的MRI图像数据;对MRI图像数据进行处理,筛选出MRI图像中含有肿瘤的图像,与随机选取的患者无肿瘤图像组成数据集,将数据集分为训练集、验证集、测试集;对训练集、验证集中的图像进行标注;训练YOLOv8目标检测模型;采用分类损失更新模型的权重;评估目标检测模型的目标检测和分类性能。本发明能够成功检测PCNS‑DLBCL肿瘤,同时可以与GBM、BM相鉴别,具有较高的准确性和鲁棒性。
-
公开(公告)号:CN120032907A
公开(公告)日:2025-05-23
申请号:CN202510120603.3
申请日:2025-01-25
Applicant: 江苏省人民医院(南京医科大学第一附属医院) , 边缘智能研究院南京有限公司 , 南京邮大医疗信息技术有限公司 , 南京明基医院有限公司
Abstract: 本发明涉及基于机器学习的急性脑损伤患者肺部感染预测方法及系统,涉及人工智能辅助诊断领域,包括:对监控指标集合进行相关性自大到小排序,获得监控指标序列;步骤二:提取前k项监控指标作为输入变量进行感染预测模型训练,获得第一感染预测模型;当第一感染预测模型的第一预测准确率小于或等于预测准确率阈值时,使用k+1更新k值,返回步骤二执行循环;当第一预测准确率大于预测准确率阈值时,将第一肺部感染预测模型设为目标肺部感染预测模型执行感染预测任务。通过本发明可以解决传统急性脑损伤患者肺部感染预测方法无法有效整合多重影响因素,适应性和实用性较差,导致预测准确性、可靠性和效率不足的技术问题。
-
公开(公告)号:CN119006916A
公开(公告)日:2024-11-22
申请号:CN202411124405.6
申请日:2024-08-16
Applicant: 江苏省人民医院(南京医科大学第一附属医院) , 南京邮大医疗信息技术有限公司
IPC: G06V10/764 , G06V10/80 , G06V10/82 , G06N3/0464 , G06N3/08 , G06T7/00
Abstract: 本发明属于医学图像处理技术领域,具体涉及基于YOLOv8的原发性中枢神经系统淋巴瘤检测分类方法及系统,包括:收集原发性中枢神经系统弥漫大B细胞淋巴瘤、颅内转移瘤、胶质母细胞瘤患者的MRI图像数据;对MRI图像数据进行处理,筛选出MRI图像中含有肿瘤的图像,与随机选取的患者无肿瘤图像组成数据集,将数据集分为训练集、验证集、测试集;对训练集、验证集中的图像进行标注;训练YOLOv8目标检测模型;采用分类损失更新模型的权重;评估目标检测模型的目标检测和分类性能。本发明能够成功检测PCNS‑DLBCL肿瘤,同时可以与GBM、BM相鉴别,具有较高的准确性和鲁棒性。
-
公开(公告)号:CN118485864A
公开(公告)日:2024-08-13
申请号:CN202410595876.9
申请日:2024-05-14
Applicant: 江苏省人民医院(南京医科大学第一附属医院) , 南京邮大医疗信息技术有限公司
IPC: G06V10/764 , G06V10/80 , G06V10/82 , G06N3/0464 , G06N3/08 , G06T7/00
Abstract: 本发明属于医学图像处理技术领域,具体涉及基于YOLOv8的原发性中枢神经系统淋巴瘤检测分类方法及系统,包括:收集原发性中枢神经系统弥漫大B细胞淋巴瘤、颅内转移瘤、胶质母细胞瘤患者的MRI图像数据;对MRI图像数据进行处理,筛选出MRI图像中含有肿瘤的图像,与随机选取的患者无肿瘤图像组成数据集,将数据集分为训练集、验证集、测试集;对训练集、验证集中的图像进行标注;训练YOLOv8目标检测模型;采用分类损失更新模型的权重;评估目标检测模型的目标检测和分类性能。本发明能够成功检测PCNS‑DLBCL肿瘤,同时可以与GBM、BM相鉴别,具有较高的准确性和鲁棒性。
-
公开(公告)号:CN117133459B
公开(公告)日:2024-04-09
申请号:CN202311176801.9
申请日:2023-09-12
Applicant: 江苏省人民医院(南京医科大学第一附属医院) , 南京邮电大学 , 南京邮大医疗信息技术有限公司
IPC: G16H50/30 , G16H50/70 , G06F18/211 , G06F18/214 , G06F18/243 , G06N20/20 , G06N7/02
Abstract: 本发明提供一种基于机器学习的术后颅内感染预测方法及系统,涉及机器学习领域,包括如下:采集涉颅手术后患者的相关信息;对于接收的数据进行删除无用数据、数据清洗、标准化、错误修正;利用粗糙集算法进行特征选择;对特征选择的结果进一步加工,将数据划分为训练集和测试集;利用代价敏感随机森林进行模型训练;在训练完成后,对得到的模型进行评估;在模型训练完成后整理出四类文件,进行接口封装,使用所述接口进行颅内感染预测。通过上述方法及系统可以提高术后颅内感染预测的精确性。
-
公开(公告)号:CN117133459A
公开(公告)日:2023-11-28
申请号:CN202311176801.9
申请日:2023-09-12
Applicant: 江苏省人民医院(南京医科大学第一附属医院) , 南京邮电大学 , 南京邮大医疗信息技术有限公司
IPC: G16H50/30 , G16H50/70 , G06F18/211 , G06F18/214 , G06F18/243 , G06N20/20 , G06N7/02
Abstract: 本发明提供一种基于机器学习的术后颅内感染预测方法及系统,涉及机器学习领域,包括如下:采集涉颅手术后患者的相关信息;对于接收的数据进行删除无用数据、数据清洗、标准化、错误修正;利用粗糙集算法进行特征选择;对特征选择的结果进一步加工,将数据划分为训练集和测试集;利用代价敏感随机森林进行模型训练;在训练完成后,对得到的模型进行评估;在模型训练完成后整理出四类文件,进行接口封装,使用所述接口进行颅内感染预测。通过上述方法及系统可以提高术后颅内感染预测的精确性。
-
-
-
-
-