-
公开(公告)号:CN107459353A
公开(公告)日:2017-12-12
申请号:CN201710535609.2
申请日:2017-07-04
Applicant: 江苏大学
IPC: C04B35/56 , C04B35/626 , C04B35/64
Abstract: 本发明提供了一种VC、TiC增强无粘结相WC基硬质合金性能的方法,步骤如下:a)VC、TiC以等摩尔比的方式加入WC基体中,加料、混料过程中不可避免地会混入极少量杂质;b)利用高能球磨方法制备(W,Ti,V)C颗粒;c)将(W,Ti,V)C颗粒压制成型后直接烧结,VC、TiC在烧结过程中抑制硬质相颗粒的长大,细化晶粒,增强力学性能。本发明对无粘结相WC基硬质合金的性能改善明显,制得无粘结相WC基硬质合金不论是硬度还是断裂韧性均较未添加VC、TiC的硬质合金有较大提升,且工艺简单、可操作性强,成本较低。
-
公开(公告)号:CN107235511A
公开(公告)日:2017-10-10
申请号:CN201710411607.2
申请日:2017-06-05
Applicant: 江苏大学
CPC classification number: C01G41/00 , B82Y30/00 , B82Y40/00 , C01G39/06 , C01P2002/72 , C01P2004/03
Abstract: 本发明提供了一种MoS2/WS2纳米层状复合材料的制备方法,步骤如下:将钼酸铵加入到去离子水中,配成钼酸铵水溶液;向钼酸铵水溶液中加入盐酸羟胺和十六烷基三甲基溴化铵,溶解,得到混合液A;在密封环境和搅拌的条件下,向混合液A中加入六氯化钨,得到混合液B;向混合液B中逐滴加入硫代乙酰胺溶液,连续搅拌,得到混合液C;将混合液C转移至聚四氟乙烯为内衬的不锈钢反应釜中进行水热反应,反应完毕后,自然冷却至室温,离心收集产物,洗涤,干燥,得到MoS2/WS2纳米层状复合材料。本方法反应条件温和,工艺简单,产率高且重现性好,所制备的MoS2/WS2纳米层状复合材料可应用于润滑油添加剂、光电材料、储氢、光催化等领域。
-
公开(公告)号:CN107140689A
公开(公告)日:2017-09-08
申请号:CN201710411616.1
申请日:2017-06-05
Applicant: 江苏大学
IPC: C01G41/00
CPC classification number: C01G41/00 , C01P2002/72 , C01P2004/04 , C01P2006/80
Abstract: 本发明提供了一种超薄WS2纳米材料的制备方法,步骤如下:步骤1、将WS2粉末置于行星式球磨机的球磨罐内,加入无水乙醇作为湿磨辅助剂,通入惰性气体作为保护气,设置转速和球磨时间进行球磨,将球磨后的样品进行干燥回收得到超细的WS2纳米粉末;步骤2、将步骤1中制得的超细的WS2纳米粉末置于无水乙醇中制得悬浊液,将该悬浊液进行超声分散处理,最后将超声后的WS2进行干燥处理,经过研磨后得到超薄WS2纳米材料。本发明的合成方法具有反应条件温和,工艺简单,产率高且重现性好的优点,所制备的超薄WS2纳米材料可应用于润滑油添加剂、光电材料、储氢、光催化等领域。
-
公开(公告)号:CN107245626A
公开(公告)日:2017-10-13
申请号:CN201710330356.5
申请日:2017-05-11
Applicant: 江苏大学
Abstract: 本发明提供了一种高熵效应增强(W,Ti,V)C‑Co硬质合金力学性能的方法,步骤如下:a)将WC、Co、VC、TiC粉末按比例混合,其中VC、TiC的摩尔百分比相等,加料、混料过程中不可避免地会混入极少量杂质;b)利用球磨方法制备高熵的(W,Ti,V)C颗粒;c)运用高熵的(W,Ti,V)C颗粒做为增强相,抑制硬质合金烧结过程中硬质相颗粒的长大,细化晶粒,增强力学性能。本发明对WC‑Co硬质合金的性能改善明显,且工艺简单、可操作性强,成本较低。
-
公开(公告)号:CN107459353B
公开(公告)日:2020-06-09
申请号:CN201710535609.2
申请日:2017-07-04
Applicant: 江苏大学
IPC: C04B35/56 , C04B35/626 , C04B35/64
Abstract: 本发明提供了一种VC、TiC增强无粘结相WC基硬质合金性能的方法,步骤如下:a)VC、TiC以等摩尔比的方式加入WC基体中,加料、混料过程中不可避免地会混入极少量杂质;b)利用高能球磨方法制备(W,Ti,V)C颗粒;c)将(W,Ti,V)C颗粒压制成型后直接烧结,VC、TiC在烧结过程中抑制硬质相颗粒的长大,细化晶粒,增强力学性能。本发明对无粘结相WC基硬质合金的性能改善明显,制得无粘结相WC基硬质合金不论是硬度还是断裂韧性均较未添加VC、TiC的硬质合金有较大提升,且工艺简单、可操作性强,成本较低。
-
公开(公告)号:CN107235511B
公开(公告)日:2019-04-30
申请号:CN201710411607.2
申请日:2017-06-05
Applicant: 江苏大学
Abstract: 本发明提供了一种MoS2/WS2纳米层状复合材料的制备方法,步骤如下:将钼酸铵加入到去离子水中,配成钼酸铵水溶液;向钼酸铵水溶液中加入盐酸羟胺和十六烷基三甲基溴化铵,溶解,得到混合液A;在密封环境和搅拌的条件下,向混合液A中加入六氯化钨,得到混合液B;向混合液B中逐滴加入硫代乙酰胺溶液,连续搅拌,得到混合液C;将混合液C转移至聚四氟乙烯为内衬的不锈钢反应釜中进行水热反应,反应完毕后,自然冷却至室温,离心收集产物,洗涤,干燥,得到MoS2/WS2纳米层状复合材料。本方法反应条件温和,工艺简单,产率高且重现性好,所制备的MoS2/WS2纳米层状复合材料可应用于润滑油添加剂、光电材料、储氢、光催化等领域。
-
公开(公告)号:CN107140624A
公开(公告)日:2017-09-08
申请号:CN201710411619.5
申请日:2017-06-05
Applicant: 江苏大学
IPC: C01B32/184 , C01G39/06
CPC classification number: C01G39/06 , C01P2002/72 , C01P2004/03 , C01P2004/30 , C01P2004/32
Abstract: 本发明提供了一种表面活性剂调控MoS2/RGO纳米复合材料形貌的方法,步骤如下:制备氧化石墨烯分散液,再向氧化石墨烯分散液中加入还原剂,制成混合液A;将钼酸铵加入到混合液A中,混匀,得到混合液B;将十六烷基三甲基溴化铵加入到混合液B中,混匀,得到混合液C;将硫代乙酰胺溶液逐滴滴加到混合液C中,混匀,得到混合液D;将混合液D转移至聚四氟乙烯为内衬的不锈钢反应釜中进行水热反应,反应完毕后,离心、洗涤固体产物,干燥,得到MoS2/RGO纳米复合材料。本发明的合成方法具有反应条件温和,工艺简单,产率高且重现性好的优点,所制备的MoS2/RGO纳米复合材料可应用于润滑油添加剂、光电材料、储氢、光催化等领域。
-
公开(公告)号:CN106282648A
公开(公告)日:2017-01-04
申请号:CN201610761096.2
申请日:2016-08-29
Applicant: 江苏大学
CPC classification number: C22C9/00 , B22F2998/10 , B22F2999/00 , C22C1/0425 , H01H1/025 , B22F2009/043 , B22F3/02 , B22F3/1007 , B22F2201/11
Abstract: 本发明提供了一种铜铬基电接触自润滑复合材料及其制备方法和用途,包括如下步骤:S1、将铜粉、铬粉、钛硅碳按质量百分比配比制得混合材料;S2、将步骤S1的混合材料和不锈钢磨球按质量比配比,密封放入行星球磨混料机的不锈钢球磨罐内;将不锈钢球磨罐抽真空,充入惰性气体,球磨制得混合粉末;S3、将步骤S2的混合粉末放入模具中,压制成型得复合材料压胚;S4、将步骤S3中的复合材料压胚放入管式炉中,充入惰性气体,高温烧结后随炉冷却,制得电接触自润滑复合材料。本发明工艺简单、生产过程对环境无污染,可操作性强,成品作为电接触材料广泛应用交通运输、冶金、造船、机械、电力、航空等领域。
-
公开(公告)号:CN106282644A
公开(公告)日:2017-01-04
申请号:CN201610631282.4
申请日:2016-08-03
Applicant: 江苏大学
CPC classification number: C22C9/00 , C22C1/05 , C22C32/0047
Abstract: 本发明属于金属基自润滑摩擦材料的技术领域,具体涉及一种铜铬基自润滑复合材料及其制备方法。其原料为铜粉、铬粉、二硼化钛粉、钛硅碳。其中,自润滑复合材料是以铜铬为基体,二硼化钛为增强相,钛硅碳为固体润滑添加剂。其质量百分比,由铜粉为60%~75%、铬粉为2%~10%、二硼化钛为5%~25%、钛硅碳为5%~30%组成。采用粉末冶金微波烧结成型,氩气保护,获得铜铬基自润滑复合材料。该材料具有摩擦系数低,强度高,抗磨损能力高等特点,从而满足不同条件下对铜铬基自润滑材料的需求。
-
公开(公告)号:CN107245626B
公开(公告)日:2018-12-14
申请号:CN201710330356.5
申请日:2017-05-11
Applicant: 江苏大学
Abstract: 本发明提供了一种高熵效应增强(W,Ti,V)C‑Co硬质合金力学性能的方法,步骤如下:a)将WC、Co、VC、TiC粉末按比例混合,其中VC、TiC的摩尔百分比相等,加料、混料过程中不可避免地会混入极少量杂质;b)利用球磨方法制备高熵的(W,Ti,V)C颗粒;c)运用高熵的(W,Ti,V)C颗粒做为增强相,抑制硬质合金烧结过程中硬质相颗粒的长大,细化晶粒,增强力学性能。本发明对WC‑Co硬质合金的性能改善明显,且工艺简单、可操作性强,成本较低。
-
-
-
-
-
-
-
-
-