一种基于深度学习的堰塞坝表层颗粒物质检测方法

    公开(公告)号:CN113191271A

    公开(公告)日:2021-07-30

    申请号:CN202110484329.X

    申请日:2021-04-30

    Abstract: 本发明公开了一种基于深度学习的堰塞坝表层颗粒物质检测方法,包括步骤:获取堰塞坝表层颗粒物质的彩色影像,建立训练影像数据集和测试影像数据集;对训练影像数据集进行预处理,形成标准训练影像数据集;对标准训练影像数据集中的堰塞坝表层颗粒物质进行标注,生成标注文件集;基于深度学习算法对标准训练影像数据集和标注文件集进行训练,生成深度学习模型;利用深度学习模型对测试影像数据集中的堰塞坝表层颗粒物质进行目标识别;基于三维重建算法对识别目标进行粒径测算;采用识别精度和粒径测算精度对模型进行评价。本发明提供的方法用于实现堰塞坝表层颗粒物质的自动检测,具有过程简单、计算可靠、识别速度快、准确率高、鲁棒性强的特点。

Patent Agency Ranking