基于中层语义属性和卷积神经网络的SAR图像分类方法

    公开(公告)号:CN106408030A

    公开(公告)日:2017-02-15

    申请号:CN201610860930.3

    申请日:2016-09-28

    Applicant: 武汉大学

    Inventor: 何楚 刘新龙 王彦

    CPC classification number: G06K9/6269

    Abstract: 本发明提供一种基于中层语义属性和卷积神经网络的SAR图像分类方法,首先对待分类的SAR图像进行中层语义属性特征图像块的提取,包括根据待分类SAR图像数据集和负样本SAR图像数据集,提取随机图像块的MVR特征,进行k-means聚类和迭代检测获得字典,根据纯度和判别度的线性组合值,筛选出最具有判别性的聚类中心作为SAR图像属性;基于属性和卷积神经网络的SAR图像分类,利用所有待分类SAR图像的属性训练卷积神经网络,将图像的全局特征和每个属性的卷积神经网络特征串联,用支持向量机进行分类。这种基于属性级别的卷积神经网络学习,使得深度学习更加具有针对性,而且同时也解决了训练数据不足的问题,深度学习得到语义属性组合特征对SAR图像的分类有较好的效果。

    基于混合统计分布与多部件模型的SAR图像目标检测方法

    公开(公告)号:CN106485269B

    公开(公告)日:2019-08-20

    申请号:CN201610859127.8

    申请日:2016-09-28

    Applicant: 武汉大学

    Inventor: 何楚 刘新龙 王彦

    Abstract: 本发明提供一种基于混合统计分布与多部件模型的SAR图像目标检测方法,首先对SAR图像训练集进行混合统计分布建模,包括对训练集中所有SAR图像分别构建空间金字塔,然后对金字塔中任一层子图像建立混合统计分布模型,对混合统计分布模型的表达式取对数,然后将期望最大化算法与MoLC参数估计方法相结合,对混合统计模型的参数进行估计;多部件模型训练与目标检测,将混合统计分布与多部件模型相结合,对SAR图像训练集中的所有图像构建混合统计分布特征金字塔,根据根滤波器窗口和部件滤波器窗口,得到目标检测框。本发明混合统计分布特征与多部件模型的结构信息相结合,能够实现SAR图像中不同目标整体与结构的准确检测。

    基于中层语义属性和卷积神经网络的SAR图像分类方法

    公开(公告)号:CN106408030B

    公开(公告)日:2019-06-25

    申请号:CN201610860930.3

    申请日:2016-09-28

    Applicant: 武汉大学

    Inventor: 何楚 刘新龙 王彦

    Abstract: 本发明提供一种基于中层语义属性和卷积神经网络的SAR图像分类方法,首先对待分类的SAR图像进行中层语义属性特征图像块的提取,包括根据待分类SAR图像数据集和负样本SAR图像数据集,提取随机图像块的MVR特征,进行k‑means聚类和迭代检测获得字典,根据纯度和判别度的线性组合值,筛选出最具有判别性的聚类中心作为SAR图像属性;基于属性和卷积神经网络的SAR图像分类,利用所有待分类SAR图像的属性训练卷积神经网络,将图像的全局特征和每个属性的卷积神经网络特征串联,用支持向量机进行分类。这种基于属性级别的卷积神经网络学习,使得深度学习更加具有针对性,而且同时也解决了训练数据不足的问题,深度学习得到语义属性组合特征对SAR图像的分类有较好的效果。

    基于FCN与稀疏-低秩子空间表示融合的PolSAR图像分类方法

    公开(公告)号:CN108446716A

    公开(公告)日:2018-08-24

    申请号:CN201810124693.3

    申请日:2018-02-07

    Applicant: 武汉大学

    Inventor: 何楚 王彦 刘新龙

    Abstract: 本发明公开了一种基于FCN与稀疏-低秩子空间表示融合的PolSAR图像分类方法,充分利用了FCN能够从PolSAR数据本身自动地学习非线性的深层多尺度空间特征的强大能力,以及基于稀疏-低秩图嵌入的线性降维算法能够在一个低维子空间中同时捕获PolSAR数据的局部和全局结构信息的优势,并对FCN和稀疏-低秩子空间表示进行有效地融合,解决了PolSAR图像的非线性深层空间特征提取问题、降维问题,以及极化信息和空间信息的有效融合问题,并有效解决PolSAR图像的分类问题。本发明获得的融合的多层次子空间特征含有多种类型的信息,包括线性的和非线性的、浅层的和深层的、局部的和全局的,以及极化的和多尺度空间的,因此具有很强的判别性,能够大大提高PolSAR图像的分类准确率。

    基于混合统计分布与多部件模型的SAR图像目标检测方法

    公开(公告)号:CN106485269A

    公开(公告)日:2017-03-08

    申请号:CN201610859127.8

    申请日:2016-09-28

    Applicant: 武汉大学

    Inventor: 何楚 刘新龙 王彦

    Abstract: 本发明提供一种基于混合统计分布与多部件模型的SAR图像目标检测方法,首先对SAR图像训练集进行混合统计分布建模,包括对训练集中所有SAR图像分别构建空间金字塔,然后对金字塔中任一层子图像建立混合统计分布模型,对混合统计分布模型的表达式取对数,然后将期望最大化算法与MoLC参数估计方法相结合,对混合统计模型的参数进行估计;多部件模型训练与目标检测,将混合统计分布与多部件模型相结合,对SAR图像训练集中的所有图像构建混合统计分布特征金字塔,根据根滤波器窗口和部件滤波器窗口,得到目标检测框。本发明混合统计分布特征与多部件模型的结构信息相结合,能够实现SAR图像中不同目标整体与结构的准确检测。

    基于FCN与稀疏-低秩子空间表示融合的PolSAR图像分类方法

    公开(公告)号:CN108446716B

    公开(公告)日:2019-09-10

    申请号:CN201810124693.3

    申请日:2018-02-07

    Applicant: 武汉大学

    Inventor: 何楚 王彦 刘新龙

    Abstract: 本发明公开了一种基于FCN与稀疏‑低秩子空间表示融合的PolSAR图像分类方法,充分利用了FCN能够从PolSAR数据本身自动地学习非线性的深层多尺度空间特征的强大能力,以及基于稀疏‑低秩图嵌入的线性降维算法能够在一个低维子空间中同时捕获PolSAR数据的局部和全局结构信息的优势,并对FCN和稀疏‑低秩子空间表示进行有效地融合,解决了PolSAR图像的非线性深层空间特征提取问题、降维问题,以及极化信息和空间信息的有效融合问题,并有效解决PolSAR图像的分类问题。本发明获得的融合的多层次子空间特征含有多种类型的信息,包括线性的和非线性的、浅层的和深层的、局部的和全局的,以及极化的和多尺度空间的,因此具有很强的判别性,能够大大提高PolSAR图像的分类准确率。

Patent Agency Ranking