-
公开(公告)号:CN113408738A
公开(公告)日:2021-09-17
申请号:CN202110531696.0
申请日:2021-05-17
IPC分类号: G06N20/00
摘要: 本发明涉及机器学习领域,公开了一种基于强化学习设计伦理智能体的方法,包括从行为规范中归纳并提取出元伦理行为;利用众包技术对元伦理行为进行分级,得到元伦理行为分级;基于轨迹树、元伦理行为分级设计和强化学习算法设计奖励机制;选择生活场景并利用奖励机制进行伦理智能体训练。本发明实现对不同场景中相似行为的概括,能够从广义上概括出人们日常生活中的各类行为,保证了环境的一般性,在一定程度上解决了场景受限的问题;通过众包技术对元伦理行为进行分级统计,即能够节省时间成本;结合元伦理行为分级与轨迹树,完善强化学习中的奖惩机制,高效应对可能遇到的人类行为。
-
公开(公告)号:CN113407716B
公开(公告)日:2022-08-19
申请号:CN202110529477.9
申请日:2021-05-14
摘要: 本发明公开了一种基于众包的人类行为文本数据集的构造以及处理方法,首先,确定需要收集的主题对象,依据具体的要求生成任务并发布于众包平台,获得设定主题下所有可能发生的人类示例的文本数据集;对于同一个行为或事件的文本经过不同人的撰写会表现在多个句子,因此需要把描述同一事件的不同句子聚类在一起,因此,对于获取的数据集采用聚类的方式将本属于同一行为的不同文本表现聚为一类;采用关联分析技术挖掘出行为之间存在的先后关系结构;采用互信息技术学习出行为之间存在的互斥关系结构,并将人类行为存在的各种关系构造成一个情节图,即表明在某种情况下会发生什么事件,并限制其发生的方式,提高对人类行为的分析的准确性。
-
公开(公告)号:CN113407716A
公开(公告)日:2021-09-17
申请号:CN202110529477.9
申请日:2021-05-14
摘要: 本发明公开了一种基于众包的人类行为文本数据集的构造以及处理方法,首先,确定需要收集的主题对象,依据具体的要求生成任务并发布于众包平台,获得设定主题下所有可能发生的人类示例的文本数据集;对于同一个行为或事件的文本经过不同人的撰写会表现在多个句子,因此需要把描述同一事件的不同句子聚类在一起,因此,对于获取的数据集采用聚类的方式将本属于同一行为的不同文本表现聚为一类;采用关联分析技术挖掘出行为之间存在的先后关系结构;采用互信息技术学习出行为之间存在的互斥关系结构,并将人类行为存在的各种关系构造成一个情节图,即表明在某种情况下会发生什么事件,并限制其发生的方式,提高对人类行为的分析的准确性。
-
公开(公告)号:CN110580340A
公开(公告)日:2019-12-17
申请号:CN201910808441.7
申请日:2019-08-29
申请人: 桂林电子科技大学
摘要: 本发明公开了一种基于多注意力机制的神经网络关系抽取方法,包括,S1:对每个句子和其相关的一对实体,采用双向GRU神经网络构建一对实体的时间歩词向量表示;S2:采用设置的单词级别的自注意力机制选择句子中表述这对实体的关系的词向量表示,得到所述一个句子的句子向量表示;S3:采用设置的句子级别的注意力机制选择其中的表示了一对实体间关系的句子向量表示,得到所述一对实体的综合向量表示;S4:将一对实体的综合向量表示与所有关系进行内积运算生成实体对之间为任一关系的概率,取最大概率得到一对实体预测关系。本发明能够对实体对的句子进行处理,获取重要句子和句子中的丰富语义,提高关系抽取效果。
-
-
-
-