一种碳纳米纤维负载MnTi双金属微球及其制备方法和应用

    公开(公告)号:CN120024867A

    公开(公告)日:2025-05-23

    申请号:CN202510168734.9

    申请日:2025-02-17

    Abstract: 本发明公开了一种碳纳米纤维负载MnTi双金属微球,以过渡金属的化合物钛酸异丙酯、四水合氯化锰,聚乙烯吡咯烷酮PVP为原料,经静电纺丝法得到碳纳米纤维负载MnTi双金属微球PVP‑MnTi;再经煅烧即可制得碳纳米纤维负载MnTi双金属微球CNT‑MnTi。其制备方法包括以下步骤:1,PVP‑MnTi的静电纺丝;2,CNT‑MnTi的制备。作为MgH2储氢催化剂的应用时,将CNT‑MnTi与氢化镁进行球磨复合,即可得到一种基于CNT‑MnTi的氢化镁储氢材料;在程序升温速率为3℃/min的条件下,初始放氢温度为180‑190℃;在吸氢压力为20‑30bar,吸氢温度为150‑250℃,吸氢时间为200‑600s的条件下,吸氢量为5.8‑6.2wt%;在放氢温度为275‑350℃,放氢时间为240‑360s的条件下,放氢量为4.0‑6.1wt%。

    一种多孔纳米棒状钛酸钴掺杂氢化铝锂储氢材料及其制备方法

    公开(公告)号:CN112830450B

    公开(公告)日:2022-06-07

    申请号:CN202110139286.1

    申请日:2021-02-02

    Abstract: 本发明公开了一种多孔纳米棒状钛酸钴掺杂氢化铝锂储氢材料,由氢化铝锂和多孔纳米棒状钛酸钴CoTiO3混合机械球磨制得;呈现均匀分散的多孔纳米棒状结构;微观尺寸为长1‑4μm,宽0.5‑2μm;多孔纳米棒状钛酸钴CoTiO3由乙酸钴、钛酸四丁酯和乙二醇反应制得。其制备方法包括:1、多孔纳米棒状钛酸钴CoTiO3制备;2、多孔纳米棒状钛酸钴CoTiO3掺杂氢化铝锂储氢材料的制备。作为储氢领域的应用,当多孔纳米棒状钛酸钴CoTiO3添加量为5 wt%时,体系放氢温度降至61℃,放氢量达到8.13 wt%;当多孔纳米棒状钛酸钴CoTiO3添加量为10 wt%时,体系放氢温度降至63℃,放氢量达到8.32 wt%。本发明具有以下优点:1、高放氢性能、高储氢容量和高放氢速率;2、放氢条件温和。

    一种多孔纳米棒状钛酸钴掺杂氢化铝锂储氢材料及其制备方法

    公开(公告)号:CN112830450A

    公开(公告)日:2021-05-25

    申请号:CN202110139286.1

    申请日:2021-02-02

    Abstract: 本发明公开了一种多孔纳米棒状钛酸钴掺杂氢化铝锂储氢材料,由氢化铝锂和多孔纳米棒状钛酸钴CoTiO3混合机械球磨制得;呈现均匀分散的多孔纳米棒状结构;微观尺寸为长1‑4μm,宽0.5‑2μm;多孔纳米棒状钛酸钴CoTiO3由乙酸钴、钛酸四丁酯和乙二醇反应制得。其制备方法包括:1、多孔纳米棒状钛酸钴CoTiO3制备;2、多孔纳米棒状钛酸钴CoTiO3掺杂氢化铝锂储氢材料的制备。作为储氢领域的应用,当多孔纳米棒状钛酸钴CoTiO3添加量为5 wt%时,体系放氢温度降至61℃,放氢量达到8.13 wt%;当多孔纳米棒状钛酸钴CoTiO3添加量为10 wt%时,体系放氢温度降至63℃,放氢量达到8.32 wt%。本发明具有以下优点:1、高放氢性能、高储氢容量和高放氢速率;2、放氢条件温和。

Patent Agency Ranking