-
公开(公告)号:CN119942076A
公开(公告)日:2025-05-06
申请号:CN202510012161.0
申请日:2025-01-03
Applicant: 桂林电子科技大学
IPC: G06V10/25 , G06V20/64 , G06V10/80 , G06V10/42 , G06V10/44 , G06V10/40 , G06V10/77 , G06V10/75 , G06V10/764 , G06N3/0464 , G06N3/045 , G06N3/0499 , G06N3/084
Abstract: 本发明公开了一种基于全局特征增强与假阴性矫正的3D多目标检测方法,方法包括:首先从LiDAR传感器获取点云数据,并转换为规则体素网格,提取鸟瞰图(BEV)特征。设计滑动窗口注意力模块,结合自适应动态区域重定位裁剪,使每个区域的特征与其他区域进行交互,增强局部特征表征能力,促进全局上下文信息融合。具体实现包括区域划分、自适应动态区域重定位裁剪、区域自注意力以及滑动区域注意力机制的应用,以捕捉不同区域间的相互作用;构建并行的多阶段热图编码器,从BEV特征中解码中心热图并投影到BEV视图。热图峰值对应潜在目标位置,通过分析强度分布识别前k个最显著的目标特征,确保精确定位;同时引入累积伪阳性管理(APM)系统,在每层热图基础上生成掩码图,结合上层掩码图和当前热图更新检测结果,选择新的前k个最高峰值实例特征,减少误报和漏检,提高检测精度。最后通过多头自注意力以及局部交叉注意力机制强化实例在全局中的表征能力,最终优化BEV特征以预测3D边界框。
-
公开(公告)号:CN119380300A
公开(公告)日:2025-01-28
申请号:CN202411318112.1
申请日:2024-09-20
Applicant: 桂林电子科技大学
IPC: G06V20/56 , G06V20/40 , G06V10/25 , G06V10/44 , G06V10/80 , G06V10/77 , G06V10/764 , G06V10/75 , G06V10/82
Abstract: 本发明提供了一种基于Transformer的3D多目标检测与跟踪方法,涉及自动驾驶和三维目标检测与跟踪技术领域。该方法包括:从六个摄像头获取连续帧的RGB图像数据流;对图像数据中的物体进行检测与跟踪;设计特征提取网络,将RGB数据流映射到鸟瞰图BEV上,以便更好地感知车辆周围环境;设计4D Tubelet Query以动态表示数据流中所有的tubelets;设计时序自注意力机制,融合长短时序上BEV特征信息,以捕捉目标的时序动态性;设计交叉注意力机制,融合4D Tubelet Query和BEV视频流,以动态学习多物体的外貌特征、角度信息以及轨迹信息等进行相应的学习;设计任务头,将Transformer获取的Query特征通过FFN生成最终的物体检测框和轨迹信息。本发明采用上述的一种基于Transformer的3D多目标检测与跟踪方法,解决了现有方法在三维多目标检测与跟踪上TBD的不足,巧妙地将检测与跟踪耦合,实现高精度的目标检测与跟踪。
-