-
公开(公告)号:CN117876335A
公开(公告)日:2024-04-12
申请号:CN202410048707.3
申请日:2024-01-12
Applicant: 桂林电子科技大学
IPC: G06T7/00 , G06T7/10 , G06T5/90 , G06T5/70 , G06T5/20 , G06T5/60 , G06N3/0895 , G06N3/0464
Abstract: 本发明公开了一种基于图像分割与降噪的弱监督钢铁表面缺陷检测方法,包括如下步骤:采集钢铁表面数据;优化U‑net网络模型以适应对钢铁表面缺陷数据进行图像分割;嵌入结构相似性指数SSIM测量系统作为模型的损失函数,结合优化的U‑net网络模型,提出一种新的网络模型SSIM‑Unet,生成钢铁表面初步缺陷分割灰度图;将得到的缺陷分割灰度图先利用高斯滤波去除成像过程中的高斯噪声,最后利用中值滤波消除图像的椒盐噪声,突出图像缺陷部分;输出钢铁表面缺陷的最终的检测结果。本方法利用少量的钢铁表面缺陷数据,无需标注即可检测出缺陷的形状,相比现有检测方法,减少人力投入的同时、在检测速度、精确率,召回率上有大幅提高。
-
公开(公告)号:CN116342553A
公开(公告)日:2023-06-27
申请号:CN202310330005.X
申请日:2023-03-30
Applicant: 桂林电子科技大学
IPC: G06T7/00 , G06N3/0464 , G06N3/08 , G06V10/44 , G06V10/82 , G06V10/762
Abstract: 本发明公开了一种基于ConvNext‑yolov7的建筑工地环境检测方法,包括如下步骤:1)采集建筑工地环境数据集:2)在YOLOv7网络中嵌入ConvNext结构,得到ConvNext‑yolov7网络模型,经过该网络模型将建筑工地中,不同特征的物体每一种的相对得分高的特征图和对应的权重打包成权重文件;3)通过权重对图像进行特征图分割,采用模糊均值聚类算法对X个特征对象生成图像特征初始聚类中心,再将初始聚类中心点传入K‑means算法,最后生成预测框;4)输出建筑工地环境检测结果。本发明方法可以识别多种不同的建筑工地内环境特征并且加以标注,修改过的网络模型提高了检测精度,相比于同类型的检测技术,其检测速度、精度均有进步,检测错误率大幅降低。
-