-
公开(公告)号:CN109525239B
公开(公告)日:2023-08-18
申请号:CN201910067022.2
申请日:2019-01-24
Applicant: 桂林电子科技大学
IPC: H03K19/0175
Abstract: 本发明公开一种数字输出两级双精度生物医学电容传感器接口电路,由电容时间转换电路和时间数字转换电路组成。采用两级双精度振荡器产生低精度、高精度两路参考信号,对被测电容进行双精度测量,在提高电容测量精度的同时,减少测量时间;同时,可根据被测电容的大小,对外接的参考电容的电容值和外部控制的可编程分频器的分频倍数进行调整,实现非固定、宽范围、高精度的电容检测;逻辑控制单元结构,使双精度参考信号可在分频后的被测信号的一个周期内完成测量,减少测量时间;电容的变化直接转换为数字编码输出,可减少模数转换单元,方便与后续芯片级联,降低电容测量误差。
-
公开(公告)号:CN110299845A
公开(公告)日:2019-10-01
申请号:CN201910620684.8
申请日:2019-07-10
Applicant: 桂林电子科技大学
Abstract: 本发明公开一种工作模式可重构的能量收集控制电路及DC-DC转换器,工作模式可重构的能量收集控制电路采用单迟滞比较器以及时序控制电路,单迟滞比较器通过对输出电压的监测以决定升降压电路的工作状态,时序控制电路根据相应的工作状态生成开关信号S1-S5,DC-DC转换器利用工作模式可重构的能量收集控制电路所生成的开关信号S1-S5,提高了输出电压的稳定性,在备用锂电池给负载供电的同时系统可以持续追踪环境能量电池的最大功率并进行持续的环境能量收集,从而提高了系统对环境能量的利用率,其能量转换效率在78%以上,环境能量追踪效率在98%以上。
-
公开(公告)号:CN110212873B
公开(公告)日:2023-12-05
申请号:CN201910620696.0
申请日:2019-07-10
Applicant: 桂林电子科技大学
Abstract: 本发明公开一种应用于可穿戴干电极心电监测的低噪声高输入阻抗放大器。放大器电路采用新颖的斩波稳定技术降低了电路的闪烁噪声,能够有效地对超低频的心电信号进行放大;同时采用了采样输入结构,保证了在使用斩波稳定技术的同时不降低放大器的输入阻抗,能够有效地从高阻的干电极获取心电信号,有利于可穿戴干电极心电检查的应用;采用了数字模拟混合调节的电极失调抑制电路,在提供了±300mV的电极失调抑制能力的同时不增加总体电路的噪声;采用快速恢复电路,提高了电极失调抑制环路的恢复时间,有利于全天候连续心电检测的应用,为物联网+医疗提供了很好的解决方案。
-
公开(公告)号:CN109525239A
公开(公告)日:2019-03-26
申请号:CN201910067022.2
申请日:2019-01-24
Applicant: 桂林电子科技大学
IPC: H03K19/0175
Abstract: 本发明公开一种数字输出两级双精度生物医学电容传感器接口电路,由电容时间转换电路和时间数字转换电路组成。采用两级双精度振荡器产生低精度、高精度两路参考信号,对被测电容进行双精度测量,在提高电容测量精度的同时,减少测量时间;同时,可根据被测电容的大小,对外接的参考电容的电容值和外部控制的可编程分频器的分频倍数进行调整,实现非固定、宽范围、高精度的电容检测;逻辑控制单元结构,使双精度参考信号可在分频后的被测信号的一个周期内完成测量,减少测量时间;电容的变化直接转换为数字编码输出,可减少模数转换单元,方便与后续芯片级联,降低电容测量误差。
-
公开(公告)号:CN110299845B
公开(公告)日:2023-12-12
申请号:CN201910620684.8
申请日:2019-07-10
Applicant: 桂林电子科技大学
Abstract: 本发明公开一种工作模式可重构的能量收集控制电路及DC‑DC转换器,工作模式可重构的能量收集控制电路采用单迟滞比较器以及时序控制电路,单迟滞比较器通过对输出电压的监测以决定升降压电路的工作状态,时序控制电路根据相应的工作状态生成开关信号S1‑S5,DC‑DC转换器利用工作模式可重构的能量收集控制电路所生成的开关信号S1‑S5,提高了输出电压的稳定性,在备用锂电池给负载供电的同时系统可以持续追踪环境能量电池的最大功率并进行持续的环境能量收集,从而提高了系统对环境能量的利用率,其能量转换效率在78%以上,环境能量追踪效率在98%以上。
-
公开(公告)号:CN110212873A
公开(公告)日:2019-09-06
申请号:CN201910620696.0
申请日:2019-07-10
Applicant: 桂林电子科技大学
IPC: H03F1/26 , H03F3/68 , A61B5/0408
Abstract: 本发明公开一种应用于可穿戴干电极心电监测的低噪声高输入阻抗放大器。放大器电路采用新颖的斩波稳定技术降低了电路的闪烁噪声,能够有效地对超低频的心电信号进行放大;同时采用了采样输入结构,保证了在使用斩波稳定技术的同时不降低放大器的输入阻抗,能够有效地从高阻的干电极获取心电信号,有利于可穿戴干电极心电检查的应用;采用了数字模拟混合调节的电极失调抑制电路,在提供了±300mV的电极失调抑制能力的同时不增加总体电路的噪声;采用快速恢复电路,提高了电极失调抑制环路的恢复时间,有利于全天候连续心电检测的应用,为物联网+医疗提供了很好的解决方案。
-
公开(公告)号:CN209201054U
公开(公告)日:2019-08-02
申请号:CN201920119637.0
申请日:2019-01-24
Applicant: 桂林电子科技大学
IPC: H03K19/0175
Abstract: 本实用新型公开一种数字输出两级双精度生物医学电容传感器接口电路,由电容时间转换电路和时间数字转换电路组成。采用两级双精度振荡器产生低精度、高精度两路参考信号,对被测电容进行双精度测量,在提高电容测量精度的同时,减少测量时间;同时,可根据被测电容的大小,对外接的参考电容的电容值和外部控制的可编程分频器的分频倍数进行调整,实现非固定、宽范围、高精度的电容检测;逻辑控制单元结构,使双精度参考信号可在分频后的被测信号的一个周期内完成测量,减少测量时间;电容的变化直接转换为数字编码输出,可减少模数转换单元,方便与后续芯片级联,降低电容测量误差。(ESM)同样的发明创造已同日申请发明专利
-
公开(公告)号:CN210120536U
公开(公告)日:2020-02-28
申请号:CN201921075619.3
申请日:2019-07-10
Applicant: 桂林电子科技大学
IPC: H03F1/26 , H03F3/68 , A61B5/0408
Abstract: 本实用新型公开一种应用于可穿戴干电极心电监测的低噪声高输入阻抗放大器。放大器电路采用新颖的斩波稳定技术降低了电路的闪烁噪声,能够有效地对超低频的心电信号进行放大;同时采用了采样输入结构,保证了在使用斩波稳定技术的同时不降低放大器的输入阻抗,能够有效地从高阻的干电极获取心电信号,有利于可穿戴干电极心电检查的应用;采用了数字模拟混合调节的电极失调抑制电路,在提供了±300mV的电极失调抑制能力的同时不增加总体电路的噪声;采用快速恢复电路,提高了电极失调抑制环路的恢复时间,有利于全天候连续心电检测的应用,为物联网+医疗提供了很好的解决方案。(ESM)同样的发明创造已同日申请发明专利
-
公开(公告)号:CN210246607U
公开(公告)日:2020-04-03
申请号:CN201921076573.7
申请日:2019-07-10
Applicant: 桂林电子科技大学
Abstract: 本实用新型公开一种工作模式可重构的能量收集控制电路及DC-DC转换器,工作模式可重构的能量收集控制电路采用单迟滞比较器以及时序控制电路,单迟滞比较器通过对输出电压的监测以决定升降压电路的工作状态,时序控制电路根据相应的工作状态生成开关信号S1-S5,DC-DC转换器利用工作模式可重构的能量收集控制电路所生成的开关信号S1-S5,提高了输出电压的稳定性,在备用锂电池给负载供电的同时系统可以持续追踪环境能量电池的最大功率并进行持续的环境能量收集,从而提高了系统对环境能量的利用率,其能量转换效率在78%以上,环境能量追踪效率在98%以上。(ESM)同样的发明创造已同日申请发明专利
-
-
-
-
-
-
-
-