基于PHD滤波雷达起伏微弱多目标的检测前跟踪方法

    公开(公告)号:CN113093174A

    公开(公告)日:2021-07-09

    申请号:CN202110235449.6

    申请日:2021-03-03

    Abstract: 本发明公开了一种基于PHD滤波雷达起伏微弱多目标的检测前跟踪方法,解决的是幅度波动下目标的检测和跟踪问题,研究了swerling0,1,3三类起伏目标模型,建立了PHD‑TBD算法下复似然和幅度似然的两种跟踪模型,其中复似然的方法弥补了幅度似然在计算过程中只考虑量测的幅度信息,而忽略相位信息的缺陷,从而更好的利用目标原始信息。本发明的方法在目标幅度波动的情况下,复似然和幅度似然相比,前者在目标位置和个数的估计性能上优于后者,且计算效率更高。在低信噪比下,复似然仍然可以有效地检测并跟踪未知数量的微弱目标。

    基于多伯努利滤波的雷达微弱起伏目标检测前跟踪算法

    公开(公告)号:CN113866755A

    公开(公告)日:2021-12-31

    申请号:CN202110818522.2

    申请日:2021-07-20

    Abstract: 本发明公开了基于多伯努利滤波的雷达微弱起伏目标检测前跟踪算法,本发明在MB‑TBD中除了考虑幅度信息还对相位进行边缘化处理,以提高了目标与噪声的区分度。利用三种Swerling类型的复似然比(CLR)代替平方模似然比(SLR)。为适应起伏目标新生先验信息未知的情况,借鉴目标相继相除的思想提出一种基于量测似然比的多伯努利滤波器自适应新生分布的TBD(LABer‑STC‑TBD),与现有的MB‑TBD自适应新生算法相比,新算法克服了目标起伏时,较弱目标与较强目标同时出现的检测困难,并在MB‑TBD更新结束后对提出依据距离和粒子权重的算法(DPM)对同一目标的伯努利分量合并。最后比较了所研究的不同情况下的估计和检测性能,并显示了LABer‑STC‑TBD算法在目标幅度波动下的优势。

Patent Agency Ranking