基于深浅特征自适应融合与上下文信息的目标跟踪方法

    公开(公告)号:CN111612817A

    公开(公告)日:2020-09-01

    申请号:CN202010375319.8

    申请日:2020-05-07

    Abstract: 本发明公开了一种基于深浅特征自适应融合与上下文信息的目标跟踪方法,首先,获取视频图像序列的第一帧图像,并基于上下文感知框架建立深层特征模型和浅层特征模型;然后获取所述视频图像序列的多个第二帧图像,并利用所述深层特征模型和所述浅层特征模型计算出对应的跟踪目标的深层特征响应和浅层特征响应;并根据所述深层特征响应和所述浅层特征响应自适应融合后的响应总和,得到所述跟踪目标在对应的所述第二帧图像中的位置;并基于阈值判断平均峰值相关能量,并更新所述深层特征模型和所述浅层特征模型,直至所述视频图像序列结束,能够有效跟踪目标,并且具有较高的准确率。

    一种基于Siamese网络的无人机跟踪方法及装置

    公开(公告)号:CN110472679A

    公开(公告)日:2019-11-19

    申请号:CN201910728575.8

    申请日:2019-08-08

    Abstract: 本发明提出一种基于Siamese网络的无人机跟踪方法及装置,该方法包括采集无人机图像样本;对采集的所述无人机图像样本进行数据扩充,生成第一样本;利用第一样本对Siamese网络进行预训练;利用训练好的Siamese网络对实时采集的无人机图像进行特征提取,生成第一低维特征矩阵;在实时采集的无人机图像中选取无人机的位置;利用训练好的Siamese网络对跟踪目标进行特征提取,生成第二低维特征矩阵;在第一低维特征矩阵中进行滑动操作,生成若干第三低维特征矩阵;计算第二低维特征矩阵与第三低维特征矩阵的相似度,其中与第二低维特征矩阵相似度最高的第三低维特征矩阵即为跟踪目标的下一帧区域;将相似性最高的区域的二进制掩膜作为输出,得到无人机在视频中的位置。

Patent Agency Ranking