-
公开(公告)号:CN119672588A
公开(公告)日:2025-03-21
申请号:CN202411493375.6
申请日:2024-10-24
Applicant: 杭州电子科技大学
Abstract: 本发明公开了一种基于特征相似度的动作分割网络优化方法。本发明首先需要获取数据集的视频,将原始的视频进行分帧处理,得到时序图片,然后获得对应的标签。然后利用通用的特征提取网络获得对数据集进行特征提取,得到相应的特征,然后根据输入的特征计算代表性特征。然后根据代表性特征进行特征相似度计算,然后进行滤波处理,之后将将滤波后的特征相似度输入到损失函数中,反向传播更新参数。本发明通过求得视频中动作的代表性特征,结合特征相似度,对网络的训练加以辅助,达到更好的动作分类结果,减少了过分割错误,适用范围广、模型精确度高、鲁棒性强。
-
公开(公告)号:CN119723630A
公开(公告)日:2025-03-28
申请号:CN202411512411.9
申请日:2024-10-28
Applicant: 杭州电子科技大学
Abstract: 本发明公开了一种基于人脸模板和滑动窗口的人脸提取方法,首先将图片转为灰度图,并采用sobel算子进行边缘检测得到边缘强度特征;对灰度图进行预处理,然后对经过处理的图片计算积分图;基于人脸模板,对人脸模板满足规则的阈值进行赋值;基于积分图计算像素密度特征,然后结合边缘强度特征标记人脸候选区域;最后利用滑动窗口检测人脸候选区域并与人脸模板满足规则结合寻找具体人脸位置,绘制人脸方框。本发明引入人脸模板与自适应的滑动窗口检测结合技术,利用检测区域与人脸模板的匹配程度增强检测的准确性。本发明采用基于特征点的局部滑动窗口,避免对无效区域、无效特征的检测,通过对边缘强度特征和像素密集度特征的检测,来预测人脸的大致位置,并结合人脸模板搜索人脸具体位置。
-
公开(公告)号:CN119762632A
公开(公告)日:2025-04-04
申请号:CN202411503462.5
申请日:2024-10-25
Applicant: 杭州电子科技大学
IPC: G06T13/20 , G06V10/80 , G06N3/047 , G06N3/0455 , G06N3/084
Abstract: 本发明公开了一种基于光流信息的扩散模型视频生成方法。首先对现有数据集中的视频进行预处理,获取参考图像信息和光流信息;然后使用标准Stable Diffusion模型作为视频生成的主干网络;使用两个与标准SD模型中Unet结构相同的Unet分别提取参考图像特征和光流特征,参考图像特征在自注意力层与SD模型Unet的自注意力层进行融合,光流特征在交叉注意力层和SD模型Unet的时序注意力层进行融合。同时为了更好的利用光流信息,本发明提出了运动损失来进一步提高网络的生成效果。另外,本发明也采用了多样化的提示信息使得网络能够获得更加稳定的生成效果。
-
公开(公告)号:CN119672769A
公开(公告)日:2025-03-21
申请号:CN202411493371.8
申请日:2024-10-24
Applicant: 杭州电子科技大学
Abstract: 本发明公开了一种基于多任务学习的端侧指纹表征识别方法。首先对指纹图片进行预处理,然后将预处理后的训练数据输入主干神经网络,得到基础特征;之后将基础特征输入细节点提取网络,经过多层卷积和反卷积,生成纹理信息图。将基础特征输入多层感知机,生成拓扑信息,并得到对应的类别信息。最后将基础特征、纹理信息和拓扑信息通过联合损失函数,反向传播于三个网络模块进行更新,以达到将基础特征在纹理信息和拓扑信息的辅佐下转化为指纹表征信息的目的。本发明使用多任务学习方法,多尺度学习指纹特征信息,有效提升指纹识别精度。本发明将指纹多尺度信息融合为一个指纹表征,使得鲁棒性更强。本发明全程采用轻量级网络,节省了硬件资源开销,更加适配端侧设备。
-
公开(公告)号:CN119672589A
公开(公告)日:2025-03-21
申请号:CN202411493382.6
申请日:2024-10-24
Applicant: 杭州电子科技大学
Abstract: 本发明公开了一种基于卡方过滤的双分支网络视频分割方法。首先利用现有的3D特征提取网络对数据集进行特征提取,然后对提取的特征进行再处理;将再处理的特征输入到双分支神经网络当中,为了结合两分支网络的特性,边界分支注重于识别边界,主干分支注重于识别动作主体,利用投票的形式结合双分支阶段输出的网络参数;最后反向传播更新参数。本发明针对于神经网络使用含有噪声的特征进行训练导致的过拟合问题,提出了一种特征预处理方式,使用卡方过滤与遗传算法来优化未经过处理的特征。本发明通过将预处理部分与双分支神经网络上进行结合,提高了预测的准确率,在50Salads与Gtea数据集上取得了出色的结果。
-
-
-
-