针对心电图数据使用二值化神经网络的心律不齐检测方法

    公开(公告)号:CN110379506A

    公开(公告)日:2019-10-25

    申请号:CN201910516177.X

    申请日:2019-06-14

    Abstract: 本发明公开了一种针对心电图数据使用二值化神经网络的心律不齐检测方法,本发明首先获取训练模型数据,在训练之前对数据进行预处理;构建一组全精度的卷积网络模型,并输入数据进行训练,对网络参数进行调整以获得较好的效果;参考获得的全精度模型,构建二值化网络模型,将数据输入进行训练,对模型参数进行微调,在训练中采用Stop-BN的训练方法以提高训练效果;将已训练好的全精度模型作为老师模型,未训练的二值化模型作为学生模型,使用老师模型对学生模型进行蒸馏训练,以获得直接训练二值化网络更好的训练效果。本发明针对房颤进行鉴别,可有效减少运算内存与运算时间,训练的网络模型取得较优成果以降低二值化带来的精度损失。

    针对心电图数据使用二值化神经网络的心律不齐检测方法

    公开(公告)号:CN110379506B

    公开(公告)日:2022-06-14

    申请号:CN201910516177.X

    申请日:2019-06-14

    Abstract: 本发明公开了一种针对心电图数据使用二值化神经网络的心律不齐检测方法,本发明首先获取训练模型数据,在训练之前对数据进行预处理;构建一组全精度的卷积网络模型,并输入数据进行训练,对网络参数进行调整以获得较好的效果;参考获得的全精度模型,构建二值化网络模型,将数据输入进行训练,对模型参数进行微调,在训练中采用Stop‑BN的训练方法以提高训练效果;将已训练好的全精度模型作为老师模型,未训练的二值化模型作为学生模型,使用老师模型对学生模型进行蒸馏训练,以获得直接训练二值化网络更好的训练效果。本发明针对房颤进行鉴别,可有效减少运算内存与运算时间,训练的网络模型取得较优成果以降低二值化带来的精度损失。

Patent Agency Ranking