基于案例推理与合作Q学习的认知无线电资源分配方法

    公开(公告)号:CN109787696A

    公开(公告)日:2019-05-21

    申请号:CN201811511217.3

    申请日:2018-12-11

    Abstract: 本发明公开了一种基于案例推理与合作Q学习的认知无线电资源分配方法。本发明结合了案例推理技术、合作算法与Q学习算法,实现信道和功率的联合分配。首先确定奖赏函数,对若干个随机资源分配案例利用传统Q学习算法进行学习,构建案例库以存储案例的特征值、Q值和效用值;然后通过匹配检索出与当前案例最相似案例,提取其Q值并归一化后作为新案例的初始Q值;接着根据奖赏值大小,采用合作算法融合Q值,通过借鉴其他用户的经验来进行学习。本发明针对传统Q学习收敛速度慢的问题,引入案例推理技术来加快算法的初始寻优速度,同时通过用户间合作加快整体的学习效率。

    基于CNN-LSTM模型和迁移学习的信号调制样式识别方法

    公开(公告)号:CN111832417B

    公开(公告)日:2023-09-15

    申请号:CN202010548590.7

    申请日:2020-06-16

    Abstract: 本发明公开一种基于CNN‑LSTM模型和迁移学习的信号调制样式识别方法。本发明首先对采集多种不同调制信号样本集,预处理得到源数据集;再构建CNN‑LSTM网络模型,将网络的权值进行随机初始化,输入源数据集对网络模型进行预训练;将预训练后CNN网络与LSTM网络的权值参数对应迁移至目标CNN‑LSTM网络中,输入训练数据集对目标CNN‑LSTM网络中的随机森林分类器进行训练,得到训练完成的CNN‑LSTM网络;最后利用训练完成的CNN‑LSTM网络对测试数据集进行调制样式识别,得到信号分类识别结果。本发明结合了CNN网络与LSTM网络的特征提取优点,提高了信号识别性能,并解决了深度学习在缺少目标信号样本的条件下识别性能差的问题。

    基于案例推理与合作Q学习的认知无线电资源分配方法

    公开(公告)号:CN109787696B

    公开(公告)日:2021-05-11

    申请号:CN201811511217.3

    申请日:2018-12-11

    Abstract: 本发明公开了一种基于案例推理与合作Q学习的认知无线电资源分配方法。本发明结合了案例推理技术、合作算法与Q学习算法,实现信道和功率的联合分配。首先确定奖赏函数,对若干个随机资源分配案例利用传统Q学习算法进行学习,构建案例库以存储案例的特征值、Q值和效用值;然后通过匹配检索出与当前案例最相似案例,提取其Q值并归一化后作为新案例的初始Q值;接着根据奖赏值大小,采用合作算法融合Q值,通过借鉴其他用户的经验来进行学习。本发明针对传统Q学习收敛速度慢的问题,引入案例推理技术来加快算法的初始寻优速度,同时通过用户间合作加快整体的学习效率。

    基于CNN-LSTM模型和迁移学习的信号调制样式识别方法

    公开(公告)号:CN111832417A

    公开(公告)日:2020-10-27

    申请号:CN202010548590.7

    申请日:2020-06-16

    Abstract: 本发明公开一种基于CNN-LSTM模型和迁移学习的信号调制样式识别方法。本发明首先对采集多种不同调制信号样本集,预处理得到源数据集;再构建CNN-LSTM网络模型,将网络的权值进行随机初始化,输入源数据集对网络模型进行预训练;将预训练后CNN网络与LSTM网络的权值参数对应迁移至目标CNN-LSTM网络中,输入训练数据集对目标CNN-LSTM网络中的随机森林分类器进行训练,得到训练完成的CNN-LSTM网络;最后利用训练完成的CNN-LSTM网络对测试数据集进行调制样式识别,得到信号分类识别结果。本发明结合了CNN网络与LSTM网络的特征提取优点,提高了信号识别性能,并解决了深度学习在缺少目标信号样本的条件下识别性能差的问题。

Patent Agency Ranking