基于轨迹的修正与简化的电动自行车轨迹地图匹配方法

    公开(公告)号:CN112989223A

    公开(公告)日:2021-06-18

    申请号:CN202110300762.3

    申请日:2021-03-22

    Abstract: 本发明提出了一种基于轨迹的修正与简化的电动自行车轨迹地图匹配方法。本发明针对电动自行车轨迹数据轨迹点采样频率过高、轨迹点密度较大以及存在无效轨迹片段的特点导致的地图匹配效率与准确率下降的问题,在地图匹配方法中增加了轨迹的修正与简化过程,能够有效地降低轨迹点密度;同时,在地图匹配过程中引入分段机制,能够有效识别出无效轨迹片段,兼顾了电动自行车轨迹数据地图匹配过程中的效率与准确率。

    结合注意力机制与动态时空卷积模型的车辆流量预测方法

    公开(公告)号:CN114299728A

    公开(公告)日:2022-04-08

    申请号:CN202111680770.1

    申请日:2021-12-29

    Abstract: 本发明涉及一种结合注意力机制与动态时空卷积模型的车辆流量预测方法,针对现有模型无法有效利用道路间车流量转移关系的问题,提出了道路级流量转移嵌入模块,学习到道路间的流量转移时间序列的张量表示;针对现有方法无法捕获动态变化的空间依赖的问题,提出了动态空间注意力模块,用于计算动态变化的空间依赖矩阵;针对现有模型无法有效对时序重要性有效建模的问题,提出了动态时间注意力模块,用于计算时序注意力权重。通过上述组件,本模型可以有效利用道路流量转移数据、捕获道路间动态变化的时空依赖关系,从而提高道路电动自行车流量预测的准确性。

    基于轨迹的修正与简化的电动自行车轨迹地图匹配方法

    公开(公告)号:CN112989223B

    公开(公告)日:2022-03-01

    申请号:CN202110300762.3

    申请日:2021-03-22

    Abstract: 本发明提出了一种基于轨迹的修正与简化的电动自行车轨迹地图匹配方法。本发明针对电动自行车轨迹数据轨迹点采样频率过高、轨迹点密度较大以及存在无效轨迹片段的特点导致的地图匹配效率与准确率下降的问题,在地图匹配方法中增加了轨迹的修正与简化过程,能够有效地降低轨迹点密度;同时,在地图匹配过程中引入分段机制,能够有效识别出无效轨迹片段,兼顾了电动自行车轨迹数据地图匹配过程中的效率与准确率。

    结合注意力机制与动态时空卷积模型的车辆流量预测方法

    公开(公告)号:CN114299728B

    公开(公告)日:2023-04-21

    申请号:CN202111680770.1

    申请日:2021-12-29

    Abstract: 本发明涉及一种结合注意力机制与动态时空卷积模型的车辆流量预测方法,针对现有模型无法有效利用道路间车流量转移关系的问题,提出了道路级流量转移嵌入模块,学习到道路间的流量转移时间序列的张量表示;针对现有方法无法捕获动态变化的空间依赖的问题,提出了动态空间注意力模块,用于计算动态变化的空间依赖矩阵;针对现有模型无法有效对时序重要性有效建模的问题,提出了动态时间注意力模块,用于计算时序注意力权重。通过上述组件,本模型可以有效利用道路流量转移数据、捕获道路间动态变化的时空依赖关系,从而提高道路电动自行车流量预测的准确性。

Patent Agency Ranking