-
公开(公告)号:CN117496273A
公开(公告)日:2024-02-02
申请号:CN202311754608.9
申请日:2023-12-20
Applicant: 杭州电子科技大学
IPC: G06V10/764 , G06V10/774 , G06V10/82 , G06V10/80 , G06N3/0464 , G06N3/08
Abstract: 本发明公开了一种级联深度学习分类模型的稻飞虱检测方法,具体步骤包括:稻飞虱图像获取以及创建稻飞虱检测数据集和稻飞虱分类数据集;用稻飞虱检测数据集训练检测模型;根据稻飞虱目标尺寸较小的特点构建了一个基于深度学习的分类模型用于对检测模型输出的稻飞虱目标进行快速分类;构建级联深度学习分类模型的稻飞虱检测模型;将待检测图片输入级联深度学习分类模型的稻飞虱检测模型得到稻飞虱的检测框及其类别。本发明针对稻飞虱目标尺寸较小容易检测错误的问题,设计了小型分类模型对稻飞虱目标进行快速准确分类,通过分离检测模型的定位和分类模块,提高了对三种稻飞虱的检测精度。