-
公开(公告)号:CN111275572A
公开(公告)日:2020-06-12
申请号:CN202010043546.0
申请日:2020-01-15
Applicant: 杭州电子科技大学
Abstract: 本发明公开了一种基于粒子群和深度强化学习的机组调度系统及方法,系统包括粒子群模块和深入强化学习模型,其中所述深入强化学习模型包括评估网络、经验回放池、目标网络和损失函数,其中,所述粒子群模块的输入为负荷需求,输出连接所述评估网络,评估网络输出Q估计值和所述经验回放池;所述经验回放池输出连接所述目标网络,所述目标网络输出Q目标值,Q目标值与Q估计值均输入所述损失函数,损失函数的输出再反馈给评估网络。本发明在优化机组调度的同时,切实从节约燃煤量的角度出发,既要满足负荷要求,也要在每一度电上至少节约出0.1克燃煤量,同时实现底层设备与机组调度控制一体化的控制优化。
-
公开(公告)号:CN111275572B
公开(公告)日:2023-07-11
申请号:CN202010043546.0
申请日:2020-01-15
Applicant: 杭州电子科技大学
Abstract: 本发明公开了一种基于粒子群和深度强化学习的机组调度系统及方法,系统包括粒子群模块和深入强化学习模型,其中所述深入强化学习模型包括评估网络、经验回放池、目标网络和损失函数,其中,所述粒子群模块的输入为负荷需求,输出连接所述评估网络,评估网络输出Q估计值和所述经验回放池;所述经验回放池输出连接所述目标网络,所述目标网络输出Q目标值,Q目标值与Q估计值均输入所述损失函数,损失函数的输出再反馈给评估网络。本发明在优化机组调度的同时,切实从节约燃煤量的角度出发,既要满足负荷要求,也要在每一度电上至少节约出0.1克燃煤量,同时实现底层设备与机组调度控制一体化的控制优化。
-