-
公开(公告)号:CN116015753B
公开(公告)日:2025-04-25
申请号:CN202211569049.X
申请日:2022-12-08
Applicant: 暨南大学
IPC: H04L9/40 , G06F21/55 , G16Y10/25 , G16Y40/50 , G06N3/045 , G06N3/0464 , G06N3/08 , H04L67/12 , H04L67/01
Abstract: 本发明公开了一种基于神经架构演化联邦学习的工业物联网入侵检测系统及方法。服务端将基于5种神经网络基础模块的联邦学习神经网络架构组合方式进行编码,下发到参与联邦学习的客户端,各客户端对本地IIoT设备的数据进行本地训练,服务端对各客户端模型中间参数聚合和适应度加权平均,通过种群演化操作,获得基于最优神经架构的联邦学习模型,并将其部署在IIoT在线入侵检测系统中,从而实现IIoT高效精准的在线入侵检测。本发明不仅可实现用于IIoT入侵检测的联邦学习模型的优化设计和自动生成,获得了易于在线部署的轻量化联邦学习模型,在保护IIoT设备隐私安全的同时,还提升了IIoT入侵检测的精确率、召回率、F1评分等性能指标。
-
公开(公告)号:CN117395028A
公开(公告)日:2024-01-12
申请号:CN202311208090.9
申请日:2023-09-18
Applicant: 暨南大学
IPC: H04L9/40 , G06N3/0464 , G06N3/094
Abstract: 本发明公开了一种基于神经架构演化的工业互联网对抗攻击系统及方法,在拥有基于深度学习模型(即目标模型)的工业互联网入侵检测系统中训练数据或数据分布的情形下,采用这些数据训练替换模型,设计雅可比显著图攻击方法对工业互联网数据中攻击样本的特定特征添加扰动,从而生成能最大限度逃避替换模型检测的对抗样本;其中替换模型最多由4种神经网络基础模块组合构成,将组合方式进行编码,将目标模型分别对攻击样本和替换模型生成对抗样本的分类准确率的差值作为个体适应度,经过种群演化操作,获得分类准确率下降值最大的最优替换模型。本发明设计了神经架构演化技术,实现了替换模型的自动优化,提升了替换模型所生成对抗样本的攻击能力。
-
公开(公告)号:CN118432891A
公开(公告)日:2024-08-02
申请号:CN202410554797.3
申请日:2024-05-07
Applicant: 暨南大学
Abstract: 本发明公开了一种基于聚类组合优化的工控联邦入侵检测后门防御方法和系统,该方法利用现有的多种后门攻击方法产生恶意的更新梯度,与正常的更新梯度作为训练集和测试集;将多种聚类方法的组合方式作为优化变量进行编码,使用训练集对组合方式进行训练,评估该组合方式在测试集上恶意梯度的识别真阳率和真阴率,将其作为优化目标函数,再通过多目标种群演化操作,获得高识别准确率的聚类组合方式,并将其用于工控联邦入侵检测系统中的后门攻击防御策略,从而实现对恶意梯度高效精准的检测。本发明在保障入侵检测系统性能的同时,得到的最优聚类方法组合方案可以准确识别并过滤恶意更新梯度,从而提高了工控联邦入侵检测系统的安全性和鲁棒性。
-
公开(公告)号:CN116015753A
公开(公告)日:2023-04-25
申请号:CN202211569049.X
申请日:2022-12-08
Applicant: 暨南大学
IPC: H04L9/40 , G06F21/55 , G16Y10/25 , G16Y40/50 , G06N3/045 , G06N3/0464 , G06N3/08 , H04L67/12 , H04L67/01
Abstract: 本发明公开了一种基于神经架构演化联邦学习的工业物联网入侵检测系统及方法。服务端将基于5种神经网络基础模块的联邦学习神经网络架构组合方式进行编码,下发到参与联邦学习的客户端,各客户端对本地IIoT设备的数据进行本地训练,服务端对各客户端模型中间参数聚合和适应度加权平均,通过种群演化操作,获得基于最优神经架构的联邦学习模型,并将其部署在IIoT在线入侵检测系统中,从而实现IIoT高效精准的在线入侵检测。本发明不仅可实现用于IIoT入侵检测的联邦学习模型的优化设计和自动生成,获得了易于在线部署的轻量化联邦学习模型,在保护IIoT设备隐私安全的同时,还提升了IIoT入侵检测的精确率、召回率、F1评分等性能指标。
-
-
-