-
公开(公告)号:CN115921892A
公开(公告)日:2023-04-07
申请号:CN202211592537.2
申请日:2022-12-13
Applicant: 暨南大学
Abstract: 本发明公开了一种增材制造覆铜石墨烯/铝合金复合材料的制备方法,包括:S1、对石墨烯片层进行表面金属化处理;S2、将得到表面均匀覆铜的石墨烯片层与铝合金粉末进行湿法低能球磨;S3、过滤、晾干、烘干后进行短时低能干磨,筛粉,得到覆铜石墨烯/铝合金复合粉末;S4、采用增材制造工艺直接成型高致密的覆铜石墨烯/铝合金复合材料。本发明通过先采用化学法对石墨烯片层进行表面金属化处理,接着采用湿法低能球磨工艺得到复合粉末,最后通过增材制造技术制备得到石墨烯分布均匀、界面结合良好,且具有优异的热学以及力学性能的覆铜石墨烯/铝合金复合材料;该复合材料在航空、航天领域轻量化、高性能先进结构有着良好的应用前景。
-
公开(公告)号:CN111607817A
公开(公告)日:2020-09-01
申请号:CN202010595593.6
申请日:2020-06-28
Applicant: 暨南大学
Abstract: 本发明属于表面工程与表面处理技术领域,具体公开了一种铁族元素和钨的合金与碳化硅复合镀层及其制备方法与应用。所述方法为(1)配制复合镀液:Fe2+/Fe3+盐、Co2+/Co3+盐、Ni2+/Ni3+盐、钨酸盐、络合剂、分散剂、碳化硅;溶剂为水;所述复合镀液的pH为7~14;(2)将基体放入复合电镀液中进行电镀;电镀所用的电流为直流、单脉冲电流、双脉冲电流或直流/脉冲叠加电流;并在电镀时进行机械、空气、喷流或超声搅拌。本发明所采用的基质合金镀层为铁族金属元素与钨的二元或多元合金是现有代铬镀层中硬度最高的合金镀层之一。
-
公开(公告)号:CN109082689B
公开(公告)日:2019-11-19
申请号:CN201810761659.7
申请日:2018-07-12
Applicant: 暨南大学
Abstract: 本发明公开了表面覆有纳米晶锌镀层的镁合金植入材料及其制备方法,所述材料包括镁合金植入材料,覆盖于镁合金植入材料之上的晶粒尺寸为1~10μm,厚度为1~10μm的粗晶锌预镀层;以及覆盖于粗晶锌预镀层之上的晶粒尺寸为30~100nm,厚度为10~100μm的纳米晶锌镀层。所述制备方法包括以下步骤:将镁合金植入材料基体加入锌预镀液中进行第一次电镀处理,水洗后直加入纳米锌电镀液中进行第二次电镀处理,再水洗。本发明制得的材料含有纳米锌,生物相容性好、成本低、操作简单、易于大规模生产;纳米晶锌镀层还可生物降解,因此,可通过对其晶粒尺寸和厚度的设计实现对镁合金植入材料服役时间的控制。
-
公开(公告)号:CN109082689A
公开(公告)日:2018-12-25
申请号:CN201810761659.7
申请日:2018-07-12
Applicant: 暨南大学
Abstract: 本发明公开了表面覆有纳米晶锌镀层的镁合金植入材料及其制备方法,所述材料包括镁合金植入材料,覆盖于镁合金植入材料之上的晶粒尺寸为1~10μm,厚度为1~10μm的粗晶锌预镀层;以及覆盖于粗晶锌预镀层之上的晶粒尺寸为30~100nm,厚度为10~100μm的纳米晶锌镀层。所述制备方法包括以下步骤:将镁合金植入材料基体加入锌预镀液中进行第一次电镀处理,水洗后直加入纳米锌电镀液中进行第二次电镀处理,再水洗。本发明制得的材料含有纳米锌,生物相容性好、成本低、操作简单、易于大规模生产;纳米晶锌镀层还可生物降解,因此,可通过对其晶粒尺寸和厚度的设计实现对镁合金植入材料服役时间的控制。
-
公开(公告)号:CN109082654A
公开(公告)日:2018-12-25
申请号:CN201810834195.8
申请日:2018-07-26
Applicant: 暨南大学
Abstract: 本发明属于纳米结构制备领域,公开了一种基于纳米晶锌镀层表面原位生长氧化锌纳米线薄膜的水热反应制备方法。该方法首先在基体表面电沉积纳米晶锌,而后以其作为模板,通过水热反应在纳米晶锌镀层表面原位生长氧化锌纳米线,所用水热反应液中起主要作用的为氢氧化钠;该工艺操作简单、成本低、能耗少、耗时短、且易于大面积制备;所制备的氧化锌纳米线薄膜与基体结合牢固,使用过成中便于回收;能够为基体镀层提供有效的腐蚀防护和光生阴极保护,可广泛应用于金属材料的腐蚀与防护;具有较强的光电活性和光吸收能力,在纳米传感器、纳米激光器、纳米发电机、发光二极管、太阳能电池和光催化等领域具有广阔的应用前景。
-
公开(公告)号:CN113070067B
公开(公告)日:2022-11-08
申请号:CN202110253281.1
申请日:2021-03-05
Applicant: 暨南大学
IPC: B01J23/80 , C07C213/02 , C07C215/76
Abstract: 本发明属于催化剂制备领域,公开了一种用于对硝基苯酚催化加氢的氧化锌纳米线负载过渡金属催化剂薄膜及其制备和应用。该制备方法首先在不锈钢网表面沉积纳米晶锌;而后以其作为模板,通过水热反应原位生长氧化锌纳米线;最后在氧化锌纳米线表面电沉积过渡金属,以实现氧化锌纳米线负载过渡金属催化剂薄膜的制备;所用镀液和水热液均组成简单、不含有毒物质、绿色环保;该工艺成本低、且易于大面积制备,可装配于现役的多种污水处理装置表面;所制备的氧化锌纳米线负载过渡金属催化剂薄膜与基底结合牢固,使用过程中便于投放、安置,使用后易于回收;具有优异的4NP→4AP催化加氢活性,在环境科学和制药工程领域具有广阔的应用前景。
-
公开(公告)号:CN112575338B
公开(公告)日:2022-02-11
申请号:CN202011576048.9
申请日:2020-12-28
Applicant: 暨南大学
IPC: C25B1/04 , C25B11/046
Abstract: 本发明公开了一种Fe基电解水析氧催化剂及其制备方法。本发明Fe基电解水析氧催化剂的制备方法包括如下步骤:将Fe基非晶合金进行高压扭转,再进行电化学腐蚀处理,得到Fe基电解水析氧催化剂。高压扭转使得非晶基体之间存在大量的有序边界,增加了高能活性区域,使反应更容易进行;电化学腐蚀铁基纳米非晶合金产生FeOOH层中氧空位,可以快速吸收和传递OH‑,进而展现出较高的反应动力学。本发明的方法得到的Fe基电解水析氧催化剂具有优越的OER催化活性。
-
公开(公告)号:CN109987938B
公开(公告)日:2022-05-06
申请号:CN201910353860.6
申请日:2019-04-29
Applicant: 暨南大学
IPC: C04B35/56 , C04B35/622
Abstract: 本发明公开了一种碳化锆/碳化铝复合陶瓷及其制备方法与应用。该方法主要通过氧化锆增韧氧化铝复合陶瓷与碳源高温烧结实现,其主要原理是碳对金属氧化物中氧的置换反应;具体为:将ZTA与碳源混合均匀,900~2054℃烧结,冷却,冲洗,干燥,得到碳化锆/碳化铝复合陶瓷。该工艺操作简单、成本低、绿色环保、且易于大面积制备;所制备的ZTAC组织均匀,其机械强度和金属润湿性均优于ZTA,可实现对ZTA的替代,用于制备陶瓷增强金属基耐磨复合材料,在矿业、电力、冶金、建筑、机械等领域具有广阔的应用前景。
-
公开(公告)号:CN113070067A
公开(公告)日:2021-07-06
申请号:CN202110253281.1
申请日:2021-03-05
Applicant: 暨南大学
IPC: B01J23/80 , C07C213/02 , C07C215/76
Abstract: 本发明属于催化剂制备领域,公开了一种用于对硝基苯酚催化加氢的氧化锌纳米线负载过渡金属催化剂薄膜及其制备和应用。该制备方法首先在不锈钢网表面沉积纳米晶锌;而后以其作为模板,通过水热反应原位生长氧化锌纳米线;最后在氧化锌纳米线表面电沉积过渡金属,以实现氧化锌纳米线负载过渡金属催化剂薄膜的制备;所用镀液和水热液均组成简单、不含有毒物质、绿色环保;该工艺成本低、且易于大面积制备,可装配于现役的多种污水处理装置表面;所制备的氧化锌纳米线负载过渡金属催化剂薄膜与基底结合牢固,使用过程中便于投放、安置,使用后易于回收;具有优异的4NP→4AP催化加氢活性,在环境科学和制药工程领域具有广阔的应用前景。
-
公开(公告)号:CN111850625A
公开(公告)日:2020-10-30
申请号:CN202010685672.6
申请日:2020-07-16
Applicant: 暨南大学
IPC: C25D3/20
Abstract: 本发明属于表面工程和表面处理技术领域,公开了一种用于镁合金表面直接电沉积铁的电镀液及其电镀工艺。本发明电镀液由包括以下浓度组分组成:水溶性铁盐/亚铁盐1-300g/L、柠檬酸和/或柠檬酸盐1-1000g/L、氟化钠1-50g/L、表面活性剂0.01-200g/L、辅助配位剂0.1-500g/L、氨水1-1000mL/L,水为溶剂。利用本发明电镀液可一步法于镁合金表面电沉积铁,所制备的纯铁镀层致密、均匀、结合力良好,生物相容性好、可降解且效果稳定,可为镁合金基体提供有效的腐蚀防护,还可实现对镀层形貌、晶粒尺寸和厚度等的可控制备。本发明电镀液及其电镀工艺成本低、操作简单、易于大规模生产。
-
-
-
-
-
-
-
-
-