-
公开(公告)号:CN115457286B
公开(公告)日:2024-09-24
申请号:CN202211235788.5
申请日:2022-10-10
申请人: 无锡学院
IPC分类号: G06F17/16 , G06V10/32 , G06V10/25 , G06V10/42 , G06V10/44 , G06V10/50 , G06V10/58 , G06V10/60 , G06V10/80
摘要: 本发明公开了一种基于全局和局部光谱加权的高光谱图像序列降维方法,载入高光谱图像序列中的第t帧高光谱图像,并对第t帧高光谱图像进行灰度归一化得到归一化后第t帧高光谱图像,确定归一化后第t帧高光谱图像的目标区域Tt;确定所述归一化后第t帧高光谱图像的目标区域Tt的第i个波段图像Tit的光谱平均值;根据所述Tt的第i个波段图像Tit的光谱平均值确定归一化后第t帧高光谱图像的目标区域Tt的全局光谱;确定Tt的局部光谱;将所述Tt的全局光谱与局部光谱加权融合成最终光谱;根据所述最终光谱确定降维之后的高光谱图像;依次载入高光谱图像序列中的所有帧高光谱图像完成高光谱图像序列降维。
-
公开(公告)号:CN115345909A
公开(公告)日:2022-11-15
申请号:CN202211271914.2
申请日:2022-10-18
申请人: 无锡学院
摘要: 本发明公开了一种基于深度空间光谱卷积融合特征的高光谱目标跟踪方法,确定归一化后的第t帧高光谱图像的目标区域Tt和搜索区域St;将Tt进行降维得到Xp;提取Xp的深度特征E;确定搜索区域x、y、z方向的边缘特征;确定融合后的三维边缘特征、深度空间光谱卷积融合特征Z、八邻域的干扰因子;获得排序前四个干扰因子和其对应的背景区域;确定对应的抑制权重以及滤波器模板;输入第t+1帧图像,以第t帧目标区域为基础,生成不同尺度的目标区域,并且将其输入,提取特征送入滤波器,得到响应值,将响应值最高的尺度确定为当前帧的目标尺度并跟新滤波器;依次读入高光谱图像序列内每一帧高光谱图像完成目标跟踪。
-
公开(公告)号:CN116091545A
公开(公告)日:2023-05-09
申请号:CN202310060920.1
申请日:2023-01-13
申请人: 无锡学院
摘要: 本发明公开了基于深度光谱级联纹理特征的高光谱视频目标跟踪方法,获得第t帧高光谱图像局部区域的光谱曲线,将未知区域像素的光谱曲线与局部区域的光谱曲线做差,将图像分割为目标区域与背景区域,导入第t+1帧,获得搜索区域每个像素点的光谱曲线,对其进行降维处理得到降维后一波段图像,提取该图像的深度特征与纹理特征,根据图像信噪比曲线获得每个光谱通道的权重,与对应纹理特征相乘进而获得光谱级联特征,将其覆盖上设置好的掩膜,获得光谱级联纹理预测特征,将其与深度特征进行逐像素卷积获得深度平均光谱级联纹理特征Uk,将第一帧图像的Uk送入DCF滤波器训练好模板,将t+1帧图像的Uk送入滤波器模板获得响应图,根据分布策略估计目标尺度,确定预测框位置,获得跟踪的目标。
-
公开(公告)号:CN116012403A
公开(公告)日:2023-04-25
申请号:CN202310079879.2
申请日:2023-01-13
申请人: 无锡学院
摘要: 本发明公开了一种基于目标和背景分割的高光谱图像序列降维方法,确定归一化后第t帧高光谱图像的目标局部区域Lt和搜索区域St;确定光谱平均值;确定局部光谱曲线Cl,并确定局部光谱平均值Cli;利用St减去Lt获得未知区域Rt;确定Rt内的未知像素的光谱曲线Cu,并确定灰度值Cuij;利用Cuij减去Cli获得误差εij;利用误差εij和灰度阈值β确定问题波段,并统计问题波段的数量;将问题波段数量小于带宽阈值η的像素标记为目标像素,并将目标像素的集合定义为目标区域Ot;计算Ot的目标平均光谱曲线Co,并确定目标平均光谱值Coi,载入第t+1帧搜索区域St+1,获得St+1上各像素点的光谱曲线Cs,并确定光谱值Csi;计算Csi和Coi的欧氏距离Dj,Dj即为降维后St+1上各像素点的灰度值,依次处理高光谱图像序列中的每一帧高光谱图像序列。
-
公开(公告)号:CN116523967A
公开(公告)日:2023-08-01
申请号:CN202310585827.2
申请日:2023-05-23
申请人: 无锡学院
摘要: 本发明公开了基于空间光谱相似性降维的高光谱目标跟踪方法,获得归一化后第1帧和第t帧高光谱图像,确定局部光谱曲线Cl,目标光谱曲线Ct,像素Hi,j的光谱曲线Ci,j,根据光谱角距离公式计算Cl和Ct确定分割阈值,通过分割阈值确定降维结果图Ir和掩膜,通过DenseNet提取Ir的深度特征,通过方差确定纹理特征的融合权重,并进行融合得到重组纹理特征,利用掩膜覆盖重组纹理特征,得到融合纹理特征,并对深度特征和融合纹理特征进行判别式相关滤波,得到对应响应图峰值坐标,对其进行计算欧式距离,再进行阈值判断,来确定是否更新滤波器参数,然后对响应图进行尺度估计并获得当前帧高光谱图像的跟踪目标。
-
公开(公告)号:CN115345909B
公开(公告)日:2023-01-24
申请号:CN202211271914.2
申请日:2022-10-18
申请人: 无锡学院
摘要: 本发明公开了一种基于深度空间光谱卷积融合特征的高光谱目标跟踪方法,确定归一化后的第t帧高光谱图像的目标区域Tt和搜索区域St;将Tt进行降维得到Xp;提取Xp的深度特征E;确定搜索区域x、y、z方向的边缘特征;确定融合后的三维边缘特征、深度空间光谱卷积融合特征Z、八邻域的干扰因子;获得排序前四个干扰因子和其对应的背景区域;确定对应的抑制权重以及滤波器模板;输入第t+1帧图像,以第t帧目标区域为基础,生成不同尺度的目标区域,并且将其输入,提取特征送入滤波器,得到响应值,将响应值最高的尺度确定为当前帧的目标尺度并跟新滤波器;依次读入高光谱图像序列内每一帧高光谱图像完成目标跟踪。
-
公开(公告)号:CN116523967B
公开(公告)日:2024-10-18
申请号:CN202310585827.2
申请日:2023-05-23
申请人: 无锡学院
摘要: 本发明公开了基于空间光谱相似性降维的高光谱目标跟踪方法,获得归一化后第1帧和第t帧高光谱图像,确定局部光谱曲线Cl,目标光谱曲线Ct,像素Hi,j的光谱曲线Ci,j,根据光谱角距离公式计算Cl和Ct确定分割阈值,通过分割阈值确定降维结果图Ir和掩膜,通过DenseNet提取Ir的深度特征,通过方差确定纹理特征的融合权重,并进行融合得到重组纹理特征,利用掩膜覆盖重组纹理特征,得到融合纹理特征,并对深度特征和融合纹理特征进行判别式相关滤波,得到对应响应图峰值坐标,对其进行计算欧式距离,再进行阈值判断,来确定是否更新滤波器参数,然后对响应图进行尺度估计并获得当前帧高光谱图像的跟踪目标。
-
公开(公告)号:CN115457286A
公开(公告)日:2022-12-09
申请号:CN202211235788.5
申请日:2022-10-10
申请人: 无锡学院
IPC分类号: G06V10/32 , G06V10/25 , G06V10/42 , G06V10/44 , G06V10/50 , G06V10/58 , G06V10/60 , G06V10/80
摘要: 本发明公开了一种基于全局和局部光谱加权的高光谱图像序列降维方法,载入高光谱图像序列中的第t帧高光谱图像,并对第t帧高光谱图像进行灰度归一化得到归一化后第t帧高光谱图像,确定归一化后第t帧高光谱图像的目标区域Tt;确定所述归一化后第t帧高光谱图像的目标区域Tt的第i个波段图像Tit的光谱平均值;根据所述Tt的第i个波段图像Tit的光谱平均值确定归一化后第t帧高光谱图像的目标区域Tt的全局光谱;确定Tt的局部光谱;将所述Tt的全局光谱与局部光谱加权融合成最终光谱;根据所述最终光谱确定降维之后的高光谱图像;依次载入高光谱图像序列中的所有帧高光谱图像完成高光谱图像序列降维。
-
公开(公告)号:CN217273242U
公开(公告)日:2022-08-23
申请号:CN202220246799.2
申请日:2022-01-30
申请人: 无锡学院
摘要: 本实用新型涉及一种基于MEMS相机的位置调节测量装置,包括底板、位于底板上方的环形轨道、滑动连接在环形轨道上的连接杆、设置在滑杆上的MEMS相机,和用于连接底板和环形轨道的若干支撑柱,所述环形轨道沿内侧设有环形滑槽,所述连接杆包括互相铰接的滑动杆和翻折杆,所述滑动杆一端设有与环形滑槽配合的球形滑块,所述MEMS相机设置在翻折杆上,待测物体放置在底板上。该实用新型能使MEMS相机从不同方向获取不规则物体的视场信息。
-
公开(公告)号:CN217279633U
公开(公告)日:2022-08-23
申请号:CN202220244446.9
申请日:2022-01-29
申请人: 无锡学院
摘要: 本实用新型涉及一种可进行调节的三维人脸考勤机装置,包括考勤机装置、支撑杆和安装基座,所述考勤机装置正面设有防尘三维摄像头,所述考勤机装置背面和安装基座上均设有安装板,所述支撑杆两端分别通过一铰接轴与两安装板铰接,支撑杆两端分别与对应的铰接轴固定,安装板与对应的铰接轴转动连接;所述安装板上固定有电机,所述电机与铰接轴同轴固定连接;电机转动,带动支撑杆与两端的安装板相对转动,进而调节考勤机装置的位置。本实用新型的人脸考勤机能够通过支撑杆来调节高度、位置以及角度。
-
-
-
-
-
-
-
-
-