一种基于拉普拉斯降维的水产养殖水质异常检测方法

    公开(公告)号:CN113984989A

    公开(公告)日:2022-01-28

    申请号:CN202111169990.8

    申请日:2021-10-08

    Applicant: 无锡学院

    Abstract: 本发明公开了一种基于拉普拉斯降维的水产养殖水质异常检测方法。属于水产养殖技术领域,具体步骤:数据降维、确定异常检测数据维度、构建DSVDD异常检测模型、输出水质异常检测数据。本发明涉及到水产养殖过程中养殖水体的6个监测指标,将这6个指标作为检测模型的输入量,利用拉普拉斯特征映射对传感器采集的水质数据进行降维,将样本输入维度从6维降到3维,确定DSVDD异常检测方法的数据维度,训练好的DSVDD检测模型进行异常检测测试,将DSVDD模型异常检测测试结果与传统的SVDD模型的异常检测结果相比,DSVDD算法有更好的检测精度,可进行高维度的水质异常检测,提高了针对水产养殖业的水体异常检测的精度。

Patent Agency Ranking