内网环境下基于强化学习的蜜网部署策略生成方法

    公开(公告)号:CN119341771A

    公开(公告)日:2025-01-21

    申请号:CN202411256729.5

    申请日:2024-09-09

    Applicant: 广州大学

    Abstract: 本发明公开了一种内网环境下基于强化学习的蜜网部署策略生成方法,方法包括:随机生成多个节点,构建内网环境;构建攻击智能体,攻击智能体与内网环境进行分阶段交互预训练攻击智能体;为每个蜜罐智能体分配带有不同攻击意图的预训练攻击智能体,在网环境中预训练蜜罐智能体;初始化预训练蜜罐智能体,利用预训练蜜罐智能体构建蜜网环境;在蜜网环境中,预训练攻击智能体与预训练蜜罐智能体进行交互,预训练决策智能体;使用MADDPG算法对所有智能体进行训练,利用预训练蜜罐智能体和预训练决策智能体构建分层防御智能体,更新每个智能体的策略网络和价值网络。本发明通过动态部署策略提升了蜜网系统的自适应能力,并增强了内网环境的安全防护水平。

    基于遗忘学习和隐式超梯度的后门防御方法

    公开(公告)号:CN119416205A

    公开(公告)日:2025-02-11

    申请号:CN202411292720.X

    申请日:2024-09-14

    Applicant: 广州大学

    Abstract: 本发明公开了一种基于遗忘学习和隐式超梯度的后门防御方法,方法包括:假设后门标签,生成标签相应可能的后门触发器并进行参数搜索,获取静态后门触发器,添加扰动,令优化器向偏离正确标签方向优化后门标签,适配动态后门触发器;利用均衡样本进行概率叠加;根据静态触发器和动态触发器的参数、以及预测概率累加分布,计算后门标签的综合得分,计算目标标签;提取模型特征等信息为训练集,将训练后的后门检测模型用于模型后门检测;构造混合数据集,将混合数据集进行数据增强;利用增强数据集合对分类模型进行遗忘训练和多阶段的隐式超梯度训练,将分类模型的后门删除。本发明有效地从神经网络模型中删除后门,以确保模型的安全性和可靠性。

    一种结合改进模拟退火算法与优先级集成的入侵检测方法

    公开(公告)号:CN117040773A

    公开(公告)日:2023-11-10

    申请号:CN202310508275.5

    申请日:2023-05-06

    Applicant: 广州大学

    Abstract: 本发明公开了一种结合改进模拟退火算法与优先级集成的入侵检测方法,包括:结合随机过采样、随机欠采样以及shuffle方法重构训练集。使用改进的模拟退火算法对流量数据做特征选择。使用基于规则与优先级的模型集成方式将LightGBM、XGBoost、CatBoost、随机森林等多种模型集成,包括使用多种模型基于训练集分别做训练,基于每个模型的表现选择一个整体性能最好的模型作为基模型,该模型具有全局把控能力并被赋予最低优先级。针对特定攻击类别Ai,从除基模型以外的模型中找两个识别Ai效果最好的通过逻辑与(&&)连接,两个模型判定结果一致才生效。最终以训练集不同攻击的隐蔽性(数量占比)为不同攻击制定判定优先级,若所有规则无法识别Ai最终由基模型做出决策。

    一种生成流量对抗样本访问黑盒模型的方法及装置

    公开(公告)号:CN116668112A

    公开(公告)日:2023-08-29

    申请号:CN202310624398.5

    申请日:2023-05-29

    Applicant: 广州大学

    Abstract: 本公开提供了一种生成流量对抗样本访问黑盒模型的方法及装置,其中,方法包括:从均衡流量样本的每一类中按比例抽取得到小样本,将小样本对黑盒模型进行访问得到预测结果,将预测结果与真实标签不一致的小样本保留为元学习样本;将元学习样本分为训练样本和测试样本,在经过预训练的替代模型上使用训练样本执行元学习的迭代训练,不断更新替代模型的网络参数,得到最终的优化替代模型,使用测试样本评估元学习的学习效果;使用均衡流量样本对优化替代模型进行白盒攻击,改变流量样本中的可微特征,在使用攻击方法对优化替代模块攻击成功后生成流量对抗样本;使用流量对抗样本攻击黑盒模型。本公开提升了黑盒攻击的攻击成功率。

Patent Agency Ranking