科技论文引用关系表示学习方法、系统及存储介质

    公开(公告)号:CN114817578B

    公开(公告)日:2022-09-09

    申请号:CN202210745739.X

    申请日:2022-06-29

    Abstract: 本发明提供一种科技论文引用关系表示学习方法、系统及存储介质,所述方法包括:获取科技论文的关系图,所述关系图中的各节点表示各科技论文,所述关系图中的各边表示科技论文之间的引用关系;基于所述关系图确定第一科技论文特征矩阵及科技论文邻接矩阵;构建图自动编码器;将所述第一科技论文特征矩阵及科技论文邻接矩阵输入至图自动编码器,得到各科技论文的第一嵌入表示。该方法可使科技论文引用关系得到更准确的表示。

    科技论文引用关系表示学习方法、系统及存储介质

    公开(公告)号:CN114817578A

    公开(公告)日:2022-07-29

    申请号:CN202210745739.X

    申请日:2022-06-29

    Abstract: 本发明提供一种科技论文引用关系表示学习方法、系统及存储介质,所述方法包括:获取科技论文的关系图,所述关系图中的各节点表示各科技论文,所述关系图中的各边表示科技论文之间的引用关系;基于所述关系图确定第一科技论文特征矩阵及科技论文邻接矩阵;构建图自动编码器;将所述第一科技论文特征矩阵及科技论文邻接矩阵输入至图自动编码器,得到各科技论文的第一嵌入表示。该方法可使科技论文引用关系得到更准确的表示。

    基于图卷积网络和注意力机制的文本关联方法及相关设备

    公开(公告)号:CN113535912A

    公开(公告)日:2021-10-22

    申请号:CN202110540413.9

    申请日:2021-05-18

    Abstract: 本公开提供一种基于图卷积网络和注意力机制的文本关联方法及相关设备,该方法包括:获取用户问题和文档;通过分词算法分别提取所述用户问题和所述文档的关键词及权重;利用词向量模型得到所述用户问题的词向量序列和所述文档的词向量序列;基于文档的词向量序列构建交互图;将用户问题的词向量和文档的词向量进行交互后构建视图;将所有所述视图输入预先构建的图卷积神经网络模型中,输出所述用户问题和所述文档的关联标签,其中,所述图卷积神经网络模型是经过预训练的。本公开采用图结构来表示文档,图结构可以在一定程度上保持文档中关键词之间的交互关系,既解决了词向量模型文本长度表征有限的问题,同时提高了科研论文检索的准确性。

    基于图卷积网络和注意力机制的文本关联方法及相关设备

    公开(公告)号:CN113535912B

    公开(公告)日:2023-12-26

    申请号:CN202110540413.9

    申请日:2021-05-18

    Abstract: 本公开提供一种基于图卷积网络和注意力机制的文本关联方法及相关设备,该方法包括:获取用户问题和文档;通过分词算法分别提取所述用户问题和所述文档的关键词及权重;利用词向量模型得到所述用户问题的词向量序列和所述文档的词向量序列;基于文档的词向量序列构建交互图;将用户问题的词向量和文档的词向量进行交互后构建视图;将所有所述视图输入预先构建的图卷积神经网络模型中,输出所述用户问题和所述文档的关联标签,其中,所述图卷积神经网络模型是经过预训练的。本公开采用图结构来表示文档,图结构可以在一定程度上保持文档中关键词之间的交互关系,既解决了词向量模型文本长度表征有限的问题,同时提高了科研论文检索的准确性。

    不完整多视角数据的聚类方法、电子设备

    公开(公告)号:CN113705603A

    公开(公告)日:2021-11-26

    申请号:CN202110784672.6

    申请日:2021-07-12

    Abstract: 本公开提供一种不完整多视角数据的聚类方法、电子设备,所述方法包括:通过多视角自编码器对不完整多视角数据缺失的多视角特征进行补全,以得到完整多视角数据及其统一特征表示;通过单层神经网络模型对完整多视角数据的局部结构进行学习,并利用图卷积网络对完整多视角数据的局部结构信息进行提取,以得到完整多视角数据各视角的节点特征表示;基于统一特征表示以及节点特征表示,通过预设的聚类算法进行聚类得到完整多视角数据的聚类结果。本公开的技术方案在补全不完整多视角数据的缺失特征后,通过结合多视角数据的全局结构和局部结构,增强多视角数据的特征表示,进而获得更准确的多视角数据的聚类结果。

Patent Agency Ranking