-
公开(公告)号:CN116456307A
公开(公告)日:2023-07-18
申请号:CN202310522070.2
申请日:2023-05-06
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院) , 江苏海洋大学
Abstract: 本发明公开一种基于Q学习的能量受限物联网数据采集和融合方法,属于利用计算机模型优化无人机群数据采集能耗的技术领域。本发明针对无人机群的碰撞避免、飞行角度变化和节点距离约束,将无人机能耗问题转化为马尔可夫决策过程,应用强化学习算法求解无人机路径决策问题:将无人机与节点之间的距离、无人机飞行角度的变化以及无人机之间的安全距离作为强化学习的奖励,使无人机群协同访问所有节点,并有效降低了能耗。此外,在无人机群任务完成后,动态选择距离基站最近的无人机作为中继无人机,中继无人机将其他无人机采集的数据统一传输到基站,从而降低了无人机群的总体飞行能耗。
-
公开(公告)号:CN119882575A
公开(公告)日:2025-04-25
申请号:CN202510360780.9
申请日:2025-03-26
Applicant: 山东省计算中心(国家超级计算济南中心)
IPC: G05B19/042
Abstract: 本发明属于机器人控制的技术领域,更具体地,涉及一种基于双重预分割的大规模物联网数据收集系统及方法。所述方法包括:对物联网中的传感器节点进行预分割,将监测区域内的所有传感器节点划分为多个簇,每个簇由一个簇头节点管理;根据无人机数量和数据分布特征,将监测区域划分为多个子区域;基于深度强化学习为无人机群设计无碰撞的飞行路径;无人机根据路径规划过程提供的飞行路径,在检测区域内移动,访问传感器节点并收集数据;同时记录已访问节点和未访问节点的状态。本发明在大规模复杂的物联网环境下,远少于传感器节点数量的无人机即可实现大量数据的采集,并合理规划无人机路径实现无碰撞规划,高效完成节点数据的采集任务。
-
公开(公告)号:CN117939563B
公开(公告)日:2024-09-03
申请号:CN202410145361.9
申请日:2024-01-31
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院) , 江苏海洋大学
Abstract: 本发明属于物联网数据采集的技术领域,更具体地,涉及一种工业环境下面向通信受限物联网节点的数据汇集方法及装置。所述方法包括:S1、给定节点数据集和预设参数,预设参数包括节点覆盖半径R、节点覆盖率C以及初始簇头个数K;S2、基于给定的节点数据集和预设参数,使用K‑medoids聚类算法将节点数据集中的所有传感器节点划分为K个簇;S3、计算K个簇的总节点覆盖率C′,若总节点覆盖率C′大于给定的节点覆盖率C,则执行步骤S4,若总节点覆盖率C′小于或等于给定的节点覆盖率C,则将给定的初始簇头个数K加一,重复执行步骤S2;S4、判断待发送数据的成员节点与其对应的目标簇头节点之间是否存在中间成员节点,若存在:筛选待发送数据的成员节点与其对应的目标簇头节点之间的最优通信链路,并控制待发送数据的成员节点通过最优通信链路将其数据传输至对应的目标簇头节点。本发明解决了现有方法无法确保在数据传输过程中节点之间建立有效的通信链路的问题。
-
公开(公告)号:CN117939563A
公开(公告)日:2024-04-26
申请号:CN202410145361.9
申请日:2024-01-31
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院) , 江苏海洋大学
Abstract: 本发明属于物联网数据采集的技术领域,更具体地,涉及一种工业环境下面向通信受限物联网节点的数据汇集方法及装置。所述方法包括:S1、给定节点数据集和预设参数,预设参数包括节点覆盖半径R、节点覆盖率C以及初始簇头个数K;S2、基于给定的节点数据集和预设参数,使用K‑medoids聚类算法将节点数据集中的所有传感器节点划分为K个簇;S3、计算K个簇的总节点覆盖率C′,若总节点覆盖率C′大于给定的节点覆盖率C,则执行步骤S4,若总节点覆盖率C′小于或等于给定的节点覆盖率C,则将给定的初始簇头个数K加一,重复执行步骤S2;S4、判断待发送数据的成员节点与其对应的目标簇头节点之间是否存在中间成员节点,若存在:筛选待发送数据的成员节点与其对应的目标簇头节点之间的最优通信链路,并控制待发送数据的成员节点通过最优通信链路将其数据传输至对应的目标簇头节点。本发明解决了现有方法无法确保在数据传输过程中节点之间建立有效的通信链路的问题。
-
公开(公告)号:CN116456307B
公开(公告)日:2024-04-09
申请号:CN202310522070.2
申请日:2023-05-06
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院) , 江苏海洋大学
Abstract: 本发明公开一种基于Q学习的能量受限物联网数据采集和融合方法,属于利用计算机模型优化无人机群数据采集能耗的技术领域。本发明针对无人机群的碰撞避免、飞行角度变化和节点距离约束,将无人机能耗问题转化为马尔可夫决策过程,应用强化学习算法求解无人机路径决策问题:将无人机与节点之间的距离、无人机飞行角度的变化以及无人机之间的安全距离作为强化学习的奖励,使无人机群协同访问所有节点,并有效降低了能耗。此外,在无人机群任务完成后,动态选择距离基站最近的无人机作为中继无人机,中继无人机将其他无人机采集的数据统一传输到基站,从而降低了无人机群的总体飞行能耗。
-
-
-
-