-
公开(公告)号:CN113284620A
公开(公告)日:2021-08-20
申请号:CN202110479863.1
申请日:2021-04-30
Applicant: 安徽理工大学 , 皖南医学院第一附属医院(皖南医学院弋矶山医院)
Abstract: 本发明涉及数据处理技术领域,公开了一种职业健康数据分析模型的建立方法,包括以下步骤:对多个心电信号的多个时域特征、频域特征和信息域特征进行遗传算法筛选,获得N2个最优的心电信号特征,记为A2;将多个最优的心电信号特征A2与血压数据和心率数据合并,获得心功能数据,记为A3;采用自适应磷虾群算法优化KELM模型的正则化系数C和径向基核函数的参数g,得到最优正则化系数Cbest和最优径向基核函数的参数gbest;将心功能数据A3作为KELM模型的输入,获取KELM模型的最优适应度,采用最优适应度的KELM模型对A3测试集进行处理,采用这种职业健康数据分析模型进行心功能数据处理,提高了心电信号分析识别的精度,同时提升了心功能数据的处理速度。
-
公开(公告)号:CN113284620B
公开(公告)日:2023-07-21
申请号:CN202110479863.1
申请日:2021-04-30
Applicant: 安徽理工大学 , 皖南医学院第一附属医院(皖南医学院弋矶山医院)
Abstract: 本发明涉及数据处理技术领域,公开了一种职业健康数据分析模型的建立方法,包括以下步骤:对多个心电信号的多个时域特征、频域特征和信息域特征进行遗传算法筛选,获得N2个最优的心电信号特征,记为A2;将多个最优的心电信号特征A2与血压数据和心率数据合并,获得心功能数据,记为A3;采用自适应磷虾群算法优化KELM模型的正则化系数C和径向基核函数的参数g,得到最优正则化系数Cbest和最优径向基核函数的参数gbest;将心功能数据A3作为KELM模型的输入,获取KELM模型的最优适应度,采用最优适应度的KELM模型对A3测试集进行处理,采用这种职业健康数据分析模型进行心功能数据处理,提高了心电信号分析识别的精度,同时提升了心功能数据的处理速度。
-
公开(公告)号:CN117994276B
公开(公告)日:2025-03-18
申请号:CN202410085496.0
申请日:2024-01-22
Applicant: 安徽理工大学
IPC: G06T7/12 , G06T7/00 , G06N3/0464 , G06N3/048 , G06N3/084
Abstract: 本发明提供了一种基于异构幻影卷积的医学图像分割方法,属于医学图像智能处理领域,包括以下步骤:S1、获取医学图像,划分训练集、验证集与测试集,并且只对训练集图像进行数据增强处理;S2、搭建异构幻影卷积基础卷积单元;S3、构建基于异构幻影卷积的医学图像分割模型进行训练,提取训练集图像特征;S4、采用Adam优化器优化参数更新,观察输出混合损失曲线,当出现过拟合趋势时,停止训练轮次;S5、使用验证集对构建基于异构幻影卷积的医学图像分割模型验证,选取Dice系数最好、MIou和Recall指标较好的一次训练模型权重保存;S6、将测试集输入最优基于异构幻影卷积的医学图像分割模型,得到分割结果。本发明有益效果为:使用异构幻影卷积构建的模型在精准分割的前提下,同时也兼顾到了模型的轻量,更加适用于部署在边缘设备。
-
公开(公告)号:CN113255889B
公开(公告)日:2024-06-14
申请号:CN202110579022.8
申请日:2021-05-26
Applicant: 安徽理工大学 , 合肥博谐电子科技有限公司
IPC: G06T7/00 , G06N3/0464 , G06N3/045 , G06N3/08 , G06N3/006 , G06V10/764
Abstract: 本发明提供了一种基于深度学习的职业性尘肺病多模态分析方法,属于尘肺病分析领域,包括:采集人员的胸部X片影像信息和个人基础信息;对个人基础信息进行词向量化处理;构建一维卷积神经网络和二维卷积神经网络,并在此基础上建立多模态卷积神经网络MM‑CNN模型;将上述两种信息作为多模态卷积神经网络MM‑CNN模型的输入,建立多分类MM‑CNN尘肺病分析模型,在满足相应约束下形成目标函数;采用混合跳蛙算法SFLA优化多分类MM‑CNN尘肺病分析模型的超参数;采用优化后的多分类MM‑CNN尘肺病分析模型对人员的胸部X片影像信息和词向量化处理后的个人信息进行分析,并输出分析结果。该方法能够实现人员肺部健康的准确、实时检测分析,完成部分职业性尘肺病的早期预警。
-
公开(公告)号:CN110321959B
公开(公告)日:2023-04-18
申请号:CN201910612866.0
申请日:2019-07-09
Applicant: 安徽理工大学
IPC: G06V10/774 , G06V20/10 , G06V10/82 , G06N3/0464 , G06N3/08
Abstract: 本发明公开了一种多光谱图像信息和CNN的煤矸识别方法,包括以下步骤:(1)煤和矸石多光谱图像信息获取;(2)煤和矸石多光谱图像样本划分;(3)卷积神经网络多光谱图像特征提取;(4)极限学习机煤矸识别模型构建。本发明采用CNN‑ELM进行煤和矸石多光谱图像的识别模型构建,提出一种新的卷积神经网络模型能够提取更多、更有效的特征信息,且可以有效避免过拟合等问题,非常适用于煤和矸石的快速、精准识别。
-
公开(公告)号:CN112505010A
公开(公告)日:2021-03-16
申请号:CN202011387405.7
申请日:2020-12-01
Applicant: 安徽理工大学
Abstract: 本发明提供了一种基于荧光光谱的变压器故障诊断装置,该装置包含电源模块、激光器模块、激光荧光探头模块、光谱仪模块、识别模块,本发明还公开了一种基于荧光光谱的变压器故障诊断方法:(1)采集油样,建立光谱数据库;(2)对原始光谱进行滤波处理;(3)对变压器油样光谱数据进行特征提取;(4)将光谱数据按照5:1的比例随机划分成训练集和测试集;(5)建立GMM‑LDA识别模型,并将测试集用于模型检验与辨识;(6)变压器故障诊断。采用LIF技术结合DAE‑GMM‑LDA的方法来分析变压器油的状态,以实现变压器故障诊断,具有较高的分类识别准确率和实际应用价值,泛化能力强,非常适合变压器故障诊断的实时准确检测和推广。
-
公开(公告)号:CN109308498B
公开(公告)日:2021-01-01
申请号:CN201811430777.6
申请日:2018-11-28
Applicant: 安徽理工大学
Abstract: 本发明涉及一种激光诱导荧光植物油掺杂小米汤辨识方法,包含以下步骤:(1)将等体积的纯花生油和小米汤按一定的掺杂浓度进行配比;(2)利用自行设计的便携式植物油无损分析仪采集油样荧光光谱数据;(3)采用中值滤波法(M edian‑Filter)平滑处理原始光谱图;(4)联合KICA与PCA算法(KICA‑PCA)优选出主要光谱信息数据;(5)采用留出法(hold‑out)把样本数据划分成训练集和测试集;(6)利用FDA对训练集进行学习和训练,测试集用于辨识效果检验。本发明采用KICA‑PCA结合FDA用于激光诱导荧光植物油掺杂小米汤辨识,提高了辨识精度和运算速度,非常适用于食品安全检测领域的研究。
-
公开(公告)号:CN109187480A
公开(公告)日:2019-01-11
申请号:CN201811434053.9
申请日:2018-11-28
Applicant: 安徽理工大学
IPC: G01N21/64
Abstract: 本发明涉及一种双激光LIF技术的花生油掺杂大豆油判别装置,该装置包含以下部分:电源模块、激光器模块1、激光器模块2、激光荧光探头模块1、激光荧光探头模块2、光谱仪模块、延时开关模块、上位机模块。荧光探头利用石英光纤采集待测植物油中因激光器发射激光产生的荧光,在光谱仪接收荧光信息的过程中利用延时开关来实现采用两个不同波段激光光源,获取双激光光源下的LIF光谱的荧光信息的分时接收,在计算荧光强度后利用上位机中VS2015软件和MATLAB软件来建立已知的花生油、大豆油纯植物油样本和它们的混合油样本激光诱导荧光光谱的MDS模型数据库对待测植物油样本的荧光光谱进行分类识别,从而有利于检测花生油中是否存在大豆油的掺杂。
-
公开(公告)号:CN117145558A
公开(公告)日:2023-12-01
申请号:CN202311198267.1
申请日:2023-09-15
Applicant: 安徽理工大学
Abstract: 本发明公开了一种减少煤矿有害气体的通风换气装置及有害气体监控系统,属于煤矿通风换气装置领域,包括:监控系统、进风管、净化机构和排风管;所述进风管与所述净化机构通过单向阀连接;所述净化机构的排放口安装有所述排风管;所述监控系统安装在所述进风管内;所述进风管在所述净化机构和监控系统之间安装有风扇;所述监控系统包括气体检测仪和回转杆;所述气体检测仪与所述进风管固定连接;与现有技术相比,本申请的减少煤矿有害气体的通风换气装置及有害气体监控系统,通过设置可调节方向的回转杆,使得气体检测仪的检测探头能够检测到任意方向和高度的气体;同时通过净化机构对气体中的一些有害物质进行降尘,从而避免其污染外部空气。
-
公开(公告)号:CN113771731B
公开(公告)日:2023-02-10
申请号:CN202110762757.4
申请日:2021-07-06
Applicant: 安徽理工大学
IPC: B60P7/08
Abstract: 本发明提供一种智能输送小车,包括输送车主体、驱动组件、直板、夹紧机构和套环,所述输送车主体底部外壁固定连接有驱动组件,所述输送车主体内侧活动连接有直板,通过设置有转动齿轮、齿条、转动圆盘、移动块及夹紧机构等装置,上料时,通过拉手将直板抽出,转动齿轮沿着齿条作转动来带动转动圆盘转动,使得三组移动块沿着转动圆盘上的螺圈槽移动,三组移动块将相对应的夹紧机构抵开,方便工作人员将壳体安置在底座上,接着通过拉手将直板推入,此时的夹紧机构在复位弹簧的作用下复位对壳体进行夹紧固定,上料过程中随着直板的推入夹紧机构随之转动对壳体进行固定夹紧,便于壳体的上料。
-
-
-
-
-
-
-
-
-