-
公开(公告)号:CN118373414A
公开(公告)日:2024-07-23
申请号:CN202410487422.X
申请日:2024-04-23
Applicant: 安徽工业大学
IPC: C01B32/168 , G01N27/327 , G01N27/414
Abstract: 本发明公开了一种铁单原子修饰多壁碳纳米管及其制备方法和应用,涉及纳米材料和电化学检测技术领域。铁单原子修饰多壁碳纳米管的制备方法包括如下步骤:(a)功能化多壁碳纳米管工序;(b)聚苯胺包覆功能化多壁碳纳米管工序;(c)铁单原子修饰聚苯胺包覆多壁碳纳米管工序。该方法具有操作简便、重新性高的有点,通过该方法制得的催化剂具有导电性好、比表面积大、原子利用率高、催化活性高的特点。利用所得铁单原子催化剂构建一种新型的电化学传感器,其对扑热息痛呈现出优越的检测性能,可应用于药品和体液中扑热息痛含量分析。
-
公开(公告)号:CN115594156B
公开(公告)日:2023-11-28
申请号:CN202211405469.4
申请日:2022-11-10
Applicant: 安徽工业大学
IPC: C01B19/00 , C01B32/16 , B22F1/054 , B82Y40/00 , B82Y30/00 , H01M10/054 , H01M4/36 , H01M4/58 , H01M4/62
Abstract: 本发明属于新型纳米材料制备技术领域,具体涉及一种竹节状锑‑硫硒化锑@空心碳管材料及其制备方法与应用,首先用两步溶剂热法制备硫硒化锑纳米线,随后在纳米线外围包覆盐酸多巴胺,经高温煅烧后,得到竹节状锑‑硫硒化锑@空心碳管;将上述竹节状锑‑硫硒化锑@空心碳管制成电极,发现其具有极佳的储钠性能。本发明制备得到的锑‑硫硒化锑@空心碳管具有尺寸均匀、孔隙间隔适中、结构完整的优点;制备方法设计科学合理,相比于现有技术,其具有简单高效、结构可控、易操作等优点,能够满足高性能锑‑硫硒化锑@空心碳管的大规模制备需求。
-
公开(公告)号:CN112289594B
公开(公告)日:2022-08-26
申请号:CN202011178632.9
申请日:2020-10-29
Applicant: 安徽工业大学
Abstract: 本发明提供了一种用于锌离子混合超级电容器的低共熔溶剂电解液的制备方法,属于电化学储能技术领域。所述低共熔溶剂电解液由一定摩尔比的高氯酸锌与氢键供体物质混合均匀,加热反应后,添加一种或两种导电剂制备而成。所述的氢键供体物质为尿素、N‑甲基乙酰胺、乙酰胺中的一种或两种;所述的导电剂为1,2‑二氯乙烷、碳酸二甲酯中的一种或两种。本发明所用电解液为低共熔溶剂,不易形成锌枝晶,提高了锌离子混合超级电容器电解液的电导率,因而使得锌离子混合超级电容器具有优异的电化学性能和高的能量密度。同时本发明所用电解液为非燃性物质,相比于有机电解液/离子液体电解液,具有更高的安全性。
-
公开(公告)号:CN114808014A
公开(公告)日:2022-07-29
申请号:CN202210488353.5
申请日:2022-05-06
Applicant: 安徽工业大学
IPC: C25B11/091 , C25B11/053 , C25B1/04
Abstract: 本发明涉及电催化技术领域,具体涉及一种新型多层金属氢氧化物电催化剂、制备方法及其应用,采用简单节能的阴极电化学沉积法在泡沫镍上沉积一层氢氧化钴,再沉积一层氢氧化铁,接着沉积一层氢氧化钴,使稳定性好的氢氧化钴包覆在高活性的氢氧化铁上,依次交替沉积,经洗涤自然晾干后,可得到多层的金属氢氧化物电催化剂,这种新型多层金属氢氧化物电催化剂,相对于传统体相金属氢氧化物,具有优异的水分解析氧反应电催化活性和稳定性,具有大规模工业化应用的潜力。
-
公开(公告)号:CN118345420A
公开(公告)日:2024-07-16
申请号:CN202410544280.6
申请日:2024-05-06
Applicant: 安徽工业大学
IPC: C25B11/081 , C25B11/065 , C25B1/04
Abstract: 本发明公开了一种氮、硼共掺杂多孔碳负载钌的制备方法及其应用,涉及纳米材料制备以及电化学催化领域,以淀粉、硼酸、三聚氰胺分别作为碳源、硼源、氮源,采用可溶性淀粉辅助约束组装热解策略制备氮、硼共掺杂碳负载钌电化学催化剂。本发明利用纳米SiO2作为合成模板,经过刻蚀后,SiO2溶解得到多孔结构,使得所制备的催化剂活性面积增大。采用价格低廉的可溶性淀粉和三聚氰胺分别作为碳源和氮源,用硼酸直接作为硼源,降低了催化剂的合成成本。所制备的氮、硼共掺杂碳可有效提高催化剂的导电性。且由于Ru与氮、硼共掺杂碳之间的协同作用,该催化剂在碱性条件中呈现优异且稳定的HER催化性能。
-
公开(公告)号:CN114774977B
公开(公告)日:2024-02-02
申请号:CN202210489535.4
申请日:2022-05-06
Applicant: 安徽工业大学
IPC: C25B11/091 , C25B1/04
Abstract: 本发明涉及电催化技术领域,具体涉及一种硫掺杂氢氧化镍‑二氧化铈复合纳米棒阵列电催化剂、制备方法及其应用,将硝酸镍、硝酸铈和硫代硫酸钠作为前驱体,通过一步水热法在泡沫镍基底上原位生长硫掺杂氢氧化镍‑二氧化铈复合纳米棒阵列,这种硫掺杂氢氧化镍‑二氧化铈复合纳米棒阵列电催化剂,具有优异的电催化水分解析氧反应催化活性,在10mA/cm2电流密度下仅需200mV的过电位,并具有很好的稳定性,满足大规模工业化应用的要求。
-
公开(公告)号:CN115764162A
公开(公告)日:2023-03-07
申请号:CN202211405439.3
申请日:2022-11-10
Applicant: 安徽工业大学
IPC: H01M50/449 , B82Y40/00 , H01M10/052 , H01M50/431
Abstract: 本发明公开一种钴纳米晶负载氮掺杂多孔碳骨架的制备方法及其在锂硫电池中的应用,本发明首先使用共沉淀法,以钴盐、表面活性剂、2‑甲基咪唑和三乙胺为原料并在适当的温度下搅拌一定时间,静置后将沉淀物洗涤干燥,再将其进行煅烧和酸处理制得纳米多孔骨架结构的Co‑N‑C。该纳米骨架结构尺寸均匀、结构完整,具备良好的孔隙结构、大表面积和丰富的电化学活性位点,将其作为隔膜修饰层时,能在很大程度上提高锂硫电池的电化学性能。本发明方法相比于现有制备Co‑N‑C的方法,具有绿色环保、简单易操作、流程短的优点,为大规模合成不同尺寸纳米级别的Co‑N‑C催化剂提供新途径。
-
公开(公告)号:CN114497492A
公开(公告)日:2022-05-13
申请号:CN202210066499.0
申请日:2022-01-20
Applicant: 安徽工业大学
Abstract: 本发明属于纳米材料技术领域,具体涉及一种核壳结构锡@碳纳米盒材料及其制备方法和应用。首先以ZnSO4·7H2O和Na2SnO3·3H2O为原料采用沉淀法得到沉淀物,将反应的沉淀物洗涤干燥,再将多巴胺包覆在ZnSnO3纳米立方块表面,随后将上述物质经高温处理制得锡@碳纳米盒。该锡@碳纳米盒尺寸均匀、结构完整、锡粒子与碳壳接触较好。本发明提供的制备方法相比于现有技术中制备锡@碳材料的方法,具有绿色环保、流程短、简单易操作、可控性好等优点,满足大规模制备锡@碳材料的需求。
-
公开(公告)号:CN112456464A
公开(公告)日:2021-03-09
申请号:CN202011337215.4
申请日:2020-11-25
Applicant: 安徽工业大学
IPC: C01B25/45 , H01M4/58 , H01M10/0525
Abstract: 本发明公开了一种利用低共熔型盐制备电极材料的方法,包括如下步骤:1)制备低共熔型盐:选用氯化胆碱作为氢键受体,选用乙二醇、尿素、草酸、柠檬酸中的至少一种作为氢键供体,将氢键受体和氢键供体混合,经搅拌、静置得到低共熔离子液体;2)制备电极材料:将低共熔离子液体、Li3PO4粉体、锰源依次加入至应容器中,搅拌后转移至水热釜中进行水热反应,离心并除去上层液体,再分别用去离子水和乙醇进行离心洗涤,洗涤后得到粉末,粉末干燥后得到磷酸锰锂。本发明利用低共熔型盐为模板制备锂离子电池正极材料磷酸锰锂,具有绿色环保、工艺简单的优点,且制备的产物具有较小的电荷转移和离子扩散电阻,展示出优良的电化学性能。
-
公开(公告)号:CN112309724A
公开(公告)日:2021-02-02
申请号:CN202011178614.0
申请日:2020-10-29
Applicant: 安徽工业大学
Abstract: 本发明提供了一种基于低共熔溶剂电解液构建锌离子混合超级电容器的方法,属于电化学储能技术领域。所述低共熔溶剂电解液由一定摩尔比的氯化锌与氢键供体物质混合均匀,加热反应后,添加一种或两种导电剂制备而成。所述的氢键供体物质为尿素、乙二醇、氯化胆碱、乙酰胺中的一种或两种。所述的导电剂为1,2‑二氯乙烷、碳酸二甲酯中的一种或两种。本发明能够提高锌离子混合超级电容器电解液的电导率,抑制锌枝晶的生长,从而提高混合超级电容器的电化学性能。同时本发明所用电解液为非燃性物质,相比于离子液体/有机电解液,更安全环保。
-
-
-
-
-
-
-
-
-