运输皮带异常检测方法、装置及计算机可读存储介质

    公开(公告)号:CN116758400A

    公开(公告)日:2023-09-15

    申请号:CN202311021023.6

    申请日:2023-08-15

    Abstract: 本申请提供一种运输皮带异常检测方法、装置及计算机可读存储介质,对神经网络模型进行预训练,对预训练后的神经网络模型进行运输皮带异常检测的模型微调,并构建运输皮带异常的特征库,根据特征库进行异常得分的自适应阈值搜索得到最优F1阈值,从而将待测试皮带图像的异常得分与最优F1阈值进行比较的结果能够确定待测试皮带图像是否异常。本实施例将深度学习和迁移学习结合并应用在运输皮带异常检测,提高了模型提取皮带异常特征的针对性和鲁棒性,并且采用自监督学习无需人工设计特征,提高了检测速度,能够实现实时检测,再有,通过自适应调整阈值来判断皮带数据是否异常,无需人工设置阈值。

    运输皮带异常检测方法、装置及计算机可读存储介质

    公开(公告)号:CN116758400B

    公开(公告)日:2023-10-17

    申请号:CN202311021023.6

    申请日:2023-08-15

    Abstract: 本申请提供一种运输皮带异常检测方法、装置及计算机可读存储介质,对神经网络模型进行预训练,对预训练后的神经网络模型进行运输皮带异常检测的模型微调,并构建运输皮带异常的特征库,根据特征库进行异常得分的自适应阈值搜索得到最优F1阈值,从而将待测试皮带图像的异常得分与最优F1阈值进行比较的结果能够确定待测试皮带图像是否异常。本实施例将深度学习和迁移学习结合并应用在运输皮带异常检测,提高了模型提取皮带异常特征的针对性和鲁棒性,并且采用自监督学习无需人工设计特征,提高了检测速度,能够实现实时检测,再有,通过自适应调整阈值来判断皮带数据是否异常,无需人工设置阈值。

Patent Agency Ranking