基于先验图像的PET图像重建方法及PET图像3D感知方法

    公开(公告)号:CN118411435A

    公开(公告)日:2024-07-30

    申请号:CN202410439671.1

    申请日:2024-04-12

    Applicant: 安徽大学

    Abstract: 本发明属于PET成像领域,具体涉及一种基于先验图像的PET图像重建方法及PET图像3D感知方法。该方案将深度学习算法与既有的PET图像重建算法相结合,并将用户之前PET检查得到PET图像作为先验信息嵌入到神经网络中。最后,在受试者每次检查时,同时采用神经网络和PET图像重建算法根据传感器数据生成融合后的重建结果。本发明的3D感知方案利用NeRF中的点云采样技术获得PET图像对应的点云数据;然后通过自定义的编码方式将五维的点云数据转换为2维的新数据;最后训练生成对抗网络实现图像重建,进而利用生成的图像进行体积渲染得到3D感知。本发明可以解决现有PET成像的质量过度依赖探测器几何排列以及检测过程的数据规模的问题,并支持减少扫描时间和剂量。

    一种指静脉生物特征识别方法、系统及匹配和识别方法

    公开(公告)号:CN114863130B

    公开(公告)日:2024-03-05

    申请号:CN202210533024.8

    申请日:2022-05-11

    Applicant: 安徽大学

    Abstract: 本发明属于医学影像处理领域,具体涉及一种指静脉生物特征识别方法、系统及匹配和识别方法。本发明采用竞争Gabor方向二值统计特征直方图,用于提取具有鉴别力的指静脉结构特征。首先,利用多方向Gabor滤波器,获取最大滤波响应值索引作为主导方向得到旋转不变特征。其次,依据指静脉图像上每个像素点各方向滤波值,比较相邻三方向顺序差值关系,构建高鉴别性的竞争Gabor方向二值模式(CGDBP)。最后,分块提取指静脉CGDBP特征,将离散的特征编码聚合成直方图表示,构造联合特征直方图HCGDBS,克服图像的平移。在四个广泛使用的指静脉数据库上进行大量实验,结果表明,所提出的方法能够有效地提高指静脉识别性能,对光照,平移、噪声和小范围的旋转较鲁棒。

    一种指静脉生物特征识别方法、系统及匹配和识别方法

    公开(公告)号:CN114863130A

    公开(公告)日:2022-08-05

    申请号:CN202210533024.8

    申请日:2022-05-11

    Applicant: 安徽大学

    Abstract: 本发明属于医学影像处理领域,具体涉及一种指静脉生物特征识别方法、系统及匹配和识别方法。本发明采用竞争Gabor方向二值统计特征直方图,用于提取具有鉴别力的指静脉结构特征。首先,利用多方向Gobar滤波器,获取最大滤波响应值索引作为主导方向得到旋转不变特征。其次,依据指静脉图像上每个像素点各方向滤波值,比较相邻三方向顺序差值关系,构建高鉴别性的竞争Gabor方向二值模式(CGDBP)。最后,分块提取指静脉CGDBP特征,将离散的特征编码聚合成直方图表示,构造联合特征直方图HCGDBS,克服图像的平移。在四个广泛使用的指静脉数据库上进行大量实验,结果表明,所提出的方法能够有效地提高指静脉识别性能,对光照,平移、噪声和小范围的旋转较鲁棒。

Patent Agency Ranking