一种基于迭代式自监督的三维生物医学图像配准方法

    公开(公告)号:CN113112534A

    公开(公告)日:2021-07-13

    申请号:CN202110421588.8

    申请日:2021-04-20

    Applicant: 安徽大学

    Abstract: 本发明涉及一种基于迭代式自监督的三维生物医学图像配准方法,与现有技术相比解决了无监督深度学习配准算法one‑shot训练策略训练出模型应用精度受限的缺陷。本发明包括以下步骤:三维生物医学图像数据集的获取和预处理;配准深度模型的构建;配准深度模型的训练;待配准图像的获取;待配准图像的预处理;三维生物医学图像配准结果的获得。本发明通过网络训练动态产生迭代式自监督信息并利用其对选取的每对图像进行多次迭代监督训练,以多次利用图像对在不同迭代阶段的差异信息获得更加精确的形变场,简单、高效地提升了现有无监督生物医学图像配准网络的配准精度。

    一种车辆违章信息发布方法、系统及存储介质

    公开(公告)号:CN108965313B

    公开(公告)日:2021-04-06

    申请号:CN201810856829.X

    申请日:2018-07-31

    Applicant: 安徽大学

    Abstract: 本申请实施例公开了一种车辆违章信息发布方法、系统及存储介质,其中方法包括:可信中心根据第一预设规则生成系统参数信息;可信中心根据第二预设规则获取基础设施发来的目标车辆的真实身份信息,查询对应目标车辆的目标参数信息;可信中心将目标参数信息发送至基础设施;基础设施根据目标参数信息及第三预设规则对目标车辆的违章信息进行加密,并将加密后的违章信息发送至所述目标车辆;目标车辆根据第四预设规则对违章信息进行认证,认证通过后接收违章信息。通过加密发布和认证接收,实现信息源认证和保护车辆隐私的完整性,同时保护基础设施发布信息的机密性。

    一种基于深度矢量场回归的三维细胞图像实例分割方法

    公开(公告)号:CN114155249B

    公开(公告)日:2024-12-06

    申请号:CN202111461795.2

    申请日:2021-12-02

    Applicant: 安徽大学

    Abstract: 本发明涉及一种基于深度矢量场回归的三维细胞图像实例分割方法,与现有技术相比解决了三维细胞图像分割中细胞紧密粘连、难以分离的缺陷。本发明包括以下步骤:三维细胞图像原始数据和标签数据的获取和预处理;实例分割深度回归神经网络的构建;实例分割深度回归神经网络的训练;三维细胞距离图的获得;三维细胞实例分割结果的获得。本发明通过将分割任务转换成为回归任务,利用回归任务去学习前景像素到背景像素的欧式距离,利用前景像素到其最近背景像素的方向矢量去更好地学习前景和背景信息,同时也包含了细胞的方向信息、利用color loss去进一步加强方向信息的学习,简单、高效地提升了三维细胞的分割精度。

    一种基于迭代式自监督的三维生物医学图像配准方法

    公开(公告)号:CN113112534B

    公开(公告)日:2022-10-18

    申请号:CN202110421588.8

    申请日:2021-04-20

    Applicant: 安徽大学

    Abstract: 本发明涉及一种基于迭代式自监督的三维生物医学图像配准方法,与现有技术相比解决了无监督深度学习配准算法one‑shot训练策略训练出模型应用精度受限的缺陷。本发明包括以下步骤:三维生物医学图像数据集的获取和预处理;配准深度模型的构建;配准深度模型的训练;待配准图像的获取;待配准图像的预处理;三维生物医学图像配准结果的获得。本发明通过网络训练动态产生迭代式自监督信息并利用其对选取的每对图像进行多次迭代监督训练,以多次利用图像对在不同迭代阶段的差异信息获得更加精确的形变场,简单、高效地提升了现有无监督生物医学图像配准网络的配准精度。

    一种基于深度矢量场回归的三维细胞图像实例分割方法

    公开(公告)号:CN114155249A

    公开(公告)日:2022-03-08

    申请号:CN202111461795.2

    申请日:2021-12-02

    Applicant: 安徽大学

    Abstract: 本发明涉及一种基于深度矢量场回归的三维细胞图像实例分割方法,与现有技术相比解决了三维细胞图像分割中细胞紧密粘连、难以分离的缺陷。本发明包括以下步骤:三维细胞图像原始数据和标签数据的获取和预处理;实例分割深度回归神经网络的构建;实例分割深度回归神经网络的训练;三维细胞距离图的获得;三维细胞实例分割结果的获得。本发明通过将分割任务转换成为回归任务,利用回归任务去学习前景像素到背景像素的欧式距离,利用前景像素到其最近背景像素的方向矢量去更好地学习前景和背景信息,同时也包含了细胞的方向信息、利用color loss去进一步加强方向信息的学习,简单、高效地提升了三维细胞的分割精度。

    一种车辆违章信息发布方法、系统及存储介质

    公开(公告)号:CN108965313A

    公开(公告)日:2018-12-07

    申请号:CN201810856829.X

    申请日:2018-07-31

    Applicant: 安徽大学

    Abstract: 本申请实施例公开了一种车辆违章信息发布方法、系统及存储介质,其中方法包括:可信中心根据第一预设规则生成系统参数信息;可信中心根据第二预设规则获取基础设施发来的目标车辆的真实身份信息,查询对应目标车辆的目标参数信息;可信中心将目标参数信息发送至基础设施;基础设施根据目标参数信息及第三预设规则对目标车辆的违章信息进行加密,并将加密后的违章信息发送至所述目标车辆;目标车辆根据第四预设规则对违章信息进行认证,认证通过后接收违章信息。通过加密发布和认证接收,实现信息源认证和保护车辆隐私的完整性,同时保护基础设施发布信息的机密性。

Patent Agency Ranking