一种基于对比学习和多模态融合的遥感影像水体分割方法

    公开(公告)号:CN118864865B

    公开(公告)日:2024-11-29

    申请号:CN202411345013.2

    申请日:2024-09-25

    Applicant: 安徽大学

    Abstract: 本发明涉及一种基于对比学习和多模态融合的遥感影像水体分割方法,与现有技术相比,解决了现有的方法在处理遥感影像水体分割问题时,分割性能严重依赖训练样本的数量及质量和忽视了不同模态之间的互补信息,从而导致分割结果的精度和鲁棒性不足的问题。本发明包括以下步骤:获取多模态的遥感影像数据集、构建基于对比学习和多模态融合的遥感影像水体分割模型、基于对比学习和多模态融合的遥感影像水体分割模型训练、水体分割结果获取。本发明充分利用了遥感影像中的多模态信息,通过对比学习提取各模态间的互补和对比特性,进一步通过多模态融合策略整合各模态信息,从而在规则化和优化水体分割的解空间,保证分割结果的精度和鲁棒性。

    一种基于对抗学习的高光谱和激光雷达多层融合分类方法

    公开(公告)号:CN117934978B

    公开(公告)日:2024-06-11

    申请号:CN202410330740.5

    申请日:2024-03-22

    Applicant: 安徽大学

    Abstract: 本发明涉及一种基于对抗学习的高光谱和激光雷达多层融合分类方法,与现有技术相比解决了监督学习模型的分类性能严重依赖训练样本的数量及质量和多模态数据融合不充分的问题。本发明包括以下步骤:高光谱和激光雷达数据的特征提取;多注意力的对抗性学习;多层次特征融合分类。本发明基于高光谱数据可以表征物体的光谱和空间特征,但是,很难区分相似光谱特征但高程信息不同的物体和激光雷达数据具有三维信息和高度信息的特点,提出用三支路提取数据特征,利用对抗性网络学习无标签数据的特征,并采用多注意力层次融合多模态特征进入分类网络,有效地解决了多模态数据融合分类问题,提高了分类的准确性和效率。

    一种空间对齐和因果交互的高光谱激光雷达协同分类方法

    公开(公告)号:CN119295952B

    公开(公告)日:2025-04-08

    申请号:CN202411812834.2

    申请日:2024-12-10

    Applicant: 安徽大学

    Abstract: 本发明涉及一种空间对齐和因果交互的高光谱激光雷达协同分类方法,与现有技术相比,解决了现有的方法在进行高光谱激光雷达协同分类过程中,由于未考虑多模态图像由于拍摄过程、成像机制等引起的空间错位及模态差异,从而导致了分类精度和鲁棒性不足的问题。本发明包括以下步骤:获取多模态遥感影像数据集、构建空间对齐和因果交互的高光谱激光雷达协同分类模型、空间对齐和因果交互的高光谱激光雷达协同分类模型训练、图像分类结果获取。本发明通过预测空间偏移量实现多模态图像精确对齐,并且运用因果交互机制区分模态的因果与非因果因素,有效剔除模态特性干扰,确保高光谱激光雷达协同分类结果的精准度与鲁棒性。

    一种显著性参考和解耦的食管肿瘤CT影像扩散分割方法

    公开(公告)号:CN119273704A

    公开(公告)日:2025-01-07

    申请号:CN202411807262.9

    申请日:2024-12-10

    Applicant: 安徽大学

    Abstract: 本发明提供了一种显著性参考和解耦的食管肿瘤CT影像扩散分割方法,通过结合显著性伪标签和扩散去噪网络,提高肿瘤分割的准确性。首先,对食管肿瘤CT图像进行预处理,并生成显著性伪标签,增强网络对肿瘤区域的关注。然后,构建显著性参考的分割网络和扩散去噪网络,采用条件扩散模型逐步加噪和去噪还原图像。设计了分割与去噪任务解耦的多任务学习框架,通过一致性约束确保任务之间的协同优化。通过联合优化交叉熵损失、Dice损失、均方误差和一致性损失,提高分割性能。实验结果表明,该方法能有效提升食管肿瘤的分割精度,具有较强的临床应用潜力。

    一种空间对齐和因果交互的高光谱激光雷达协同分类方法

    公开(公告)号:CN119295952A

    公开(公告)日:2025-01-10

    申请号:CN202411812834.2

    申请日:2024-12-10

    Applicant: 安徽大学

    Abstract: 本发明涉及一种空间对齐和因果交互的高光谱激光雷达协同分类方法,与现有技术相比,解决了现有的方法在进行高光谱激光雷达协同分类过程中,由于未考虑多模态图像由于拍摄过程、成像机制等引起的空间错位及模态差异,从而导致了分类精度和鲁棒性不足的问题。本发明包括以下步骤:获取多模态遥感影像数据集、构建空间对齐和因果交互的高光谱激光雷达协同分类模型、空间对齐和因果交互的高光谱激光雷达协同分类模型训练、图像分类结果获取。本发明通过预测空间偏移量实现多模态图像精确对齐,并且运用因果交互机制区分模态的因果与非因果因素,有效剔除模态特性干扰,确保高光谱激光雷达协同分类结果的精准度与鲁棒性。

    一种基于对比学习和多模态融合的遥感影像水体分割方法

    公开(公告)号:CN118864865A

    公开(公告)日:2024-10-29

    申请号:CN202411345013.2

    申请日:2024-09-25

    Applicant: 安徽大学

    Abstract: 本发明涉及一种基于对比学习和多模态融合的遥感影像水体分割方法,与现有技术相比,解决了现有的方法在处理遥感影像水体分割问题时,分割性能严重依赖训练样本的数量及质量和忽视了不同模态之间的互补信息,从而导致分割结果的精度和鲁棒性不足的问题。本发明包括以下步骤:获取多模态的遥感影像数据集、构建基于对比学习和多模态融合的遥感影像水体分割模型、基于对比学习和多模态融合的遥感影像水体分割模型训练、水体分割结果获取。本发明充分利用了遥感影像中的多模态信息,通过对比学习提取各模态间的互补和对比特性,进一步通过多模态融合策略整合各模态信息,从而在规则化和优化水体分割的解空间,保证分割结果的精度和鲁棒性。

    一种显著性参考和解耦的食管肿瘤CT影像扩散分割方法

    公开(公告)号:CN119273704B

    公开(公告)日:2025-04-04

    申请号:CN202411807262.9

    申请日:2024-12-10

    Applicant: 安徽大学

    Abstract: 本发明提供了一种显著性参考和解耦的食管肿瘤CT影像扩散分割方法,通过结合显著性伪标签和扩散去噪网络,提高肿瘤分割的准确性。首先,对食管肿瘤CT图像进行预处理,并生成显著性伪标签,增强网络对肿瘤区域的关注。然后,构建显著性参考的分割网络和扩散去噪网络,采用条件扩散模型逐步加噪和去噪还原图像。设计了分割与去噪任务解耦的多任务学习框架,通过一致性约束确保任务之间的协同优化。通过联合优化交叉熵损失、Dice损失、均方误差和一致性损失,提高分割性能。实验结果表明,该方法能有效提升食管肿瘤的分割精度,具有较强的临床应用潜力。

    一种基于未配准的物理指导生成式对抗高光谱超分辨率方法

    公开(公告)号:CN118212127A

    公开(公告)日:2024-06-18

    申请号:CN202410085428.4

    申请日:2024-01-20

    Applicant: 安徽大学

    Abstract: 本发明涉及一种基于未配准的物理指导生成式对抗高光谱超分辨率方法,与现有技术相比解决了必须以精确配准为前提、高光谱数据合成过程中缺乏必要的物理意义而导致重建结果不稳定的问题。本发明包括以下步骤:获取合成不同分辨率高光谱和多光谱数据集、构建基于未配准的物理指导生成式对抗高光谱超分辨率模型、基于未配准的物理指导生成式对抗高光谱超分辨率模型训练、待增强真实高光谱和多光谱遥感影像获取、超分辨率重建结果获取。本发明基于高光谱图像丰富的光谱信息和多光谱图像丰富的空间信息,提出多模态融合网络重建高分辨率高光谱融合影像,获得高分辨率、高信噪比和特征可识别的增强图像。

    一种基于对抗学习的高光谱和激光雷达多层融合分类方法

    公开(公告)号:CN117934978A

    公开(公告)日:2024-04-26

    申请号:CN202410330740.5

    申请日:2024-03-22

    Applicant: 安徽大学

    Abstract: 本发明涉及一种基于对抗学习的高光谱和激光雷达多层融合分类方法,与现有技术相比解决了监督学习模型的分类性能严重依赖训练样本的数量及质量和多模态数据融合不充分的问题。本发明包括以下步骤:高光谱和激光雷达数据的特征提取;多注意力的对抗性学习;多层次特征融合分类。本发明基于高光谱数据可以表征物体的光谱和空间特征,但是,很难区分相似光谱特征但高程信息不同的物体和激光雷达数据具有三维信息和高度信息的特点,提出用三支路提取数据特征,利用对抗性网络学习无标签数据的特征,并采用多注意力层次融合多模态特征进入分类网络,有效地解决了多模态数据融合分类问题,提高了分类的准确性和效率。

Patent Agency Ranking