-
公开(公告)号:CN111259925B
公开(公告)日:2023-05-02
申请号:CN202010016353.6
申请日:2020-01-08
Applicant: 安徽大学
IPC: G06V10/762 , G06V10/764 , G06V10/774 , G06T7/11 , G06T7/155 , G06T7/187
Abstract: 本发明特别涉及一种基于K均值聚类和宽度突变算法的田间麦穗计数方法,包括如下步骤:S1、采集麦穗原始图像并对原始图像进行预处理;S2、对预处理后的图像依次进行图像变换、K均值聚类、形态学处理后得到麦穗粗分割图;S3、选择随机森林分类器,用滑窗法对训练集图片滑窗取样,进一步对麦穗粗分割图进行细分割;S4、根据每个连通域中的麦穗区域宽度突变情况统计麦穗数量。通过预处理将原始图像转换成统一格式的图像以方便后续处理,通过K均值聚类可以将图像中连通域挑选出来,通过随机森林分类器,可以将其中的麦穗部分筛选出来,最后根据宽度突变情况来对麦穗进行计数,这样就能较为准确的计算出麦穗的数量,即使麦穗之间有遮挡,依然不会影响到麦穗的计数。
-
公开(公告)号:CN111259925A
公开(公告)日:2020-06-09
申请号:CN202010016353.6
申请日:2020-01-08
Applicant: 安徽大学
Abstract: 本发明特别涉及一种基于K均值聚类和宽度突变算法的田间麦穗计数方法,包括如下步骤:S1、采集麦穗原始图像并对原始图像进行预处理;S2、对预处理后的图像依次进行图像变换、K均值聚类、形态学处理后得到麦穗粗分割图;S3、选择随机森林分类器,用滑窗法对训练集图片滑窗取样,进一步对麦穗粗分割图进行细分割;S4、根据每个连通域中的麦穗区域宽度突变情况统计麦穗数量。通过预处理将原始图像转换成统一格式的图像以方便后续处理,通过K均值聚类可以将图像中连通域挑选出来,通过随机森林分类器,可以将其中的麦穗部分筛选出来,最后根据宽度突变情况来对麦穗进行计数,这样就能较为准确的计算出麦穗的数量,即使麦穗之间有遮挡,依然不会影响到麦穗的计数。
-