-
公开(公告)号:CN117197807A
公开(公告)日:2023-12-08
申请号:CN202311220559.0
申请日:2023-09-20
Applicant: 安徽大学
IPC: G06V20/69 , G06V10/44 , G06N3/045 , G06N3/0464 , G06N3/084
Abstract: 本发明涉及基于YOLOv4‑tiny轻量化模型的小麦赤霉病孢子识别方法,与现有技术相比解决了赤霉病孢子检测准确率低、检测速度慢、计算量大的缺陷。本发明包括以下步骤:孢子图像数据集的建立;构建轻量化孢子识别模型;轻量化孢子识别模型的训练;待识别孢子图像的获取;小麦赤霉病孢子识别结果的获得。本发明利用YOLOv4‑tiny具有更高的检测速度和较好的实时性的特点,在保证准确性的同时实现快速检测;本发明通过将YOLOv4主干特征提取网络CSPDarknet53模块替换为CSPDarknet53_tiny模块,有效的实现了小麦赤霉病孢子快速准确检测识别。
-
公开(公告)号:CN117286014A
公开(公告)日:2023-12-26
申请号:CN202311254140.7
申请日:2023-09-26
Applicant: 安徽大学
Abstract: 本发明涉及农业病菌孢子检测技术领域,具体是涉及一种能够捕捉气传真菌病害孢子的自动化装置,包括壳体、竖直设置于壳体内的孢子捕捉装置,孢子捕捉装置靠近壳体顶部设置;所述孢子捕捉装置还设有顶部捕捉仓和侧壁捕捉仓,顶部捕捉仓呈竖直状态设置于孢子捕捉装置顶部且穿过壳体置于防尘罩内;侧壁捕捉仓呈竖直状态固定设置于壳体边角处且一一对应壳体边角设置有多组;孢子检测装置呈竖直状态固定设置于壳体内且靠近壳体底部设置;所述壳体的外壁还折叠设置有用以为设置供电的太阳能供电模块;本发明不仅可以实现自动对孢子进行捕捉而且可以自动对其进行检测,可以实时对孢子进行检测,精确地预测孢子的传播以及病害情况。
-
公开(公告)号:CN117272021A
公开(公告)日:2023-12-22
申请号:CN202311211477.X
申请日:2023-09-19
Applicant: 安徽大学
IPC: G06F18/213 , G06F18/2451 , G01N25/72
Abstract: 本发明涉及一种基于水果表面不同组织热特性的水果损伤检测方法,与现有技术相比解决了难以针对水果进行损坏检测的缺陷。本发明包括以下步骤:温度数据的采集;温度数据特征值的提取;特征值的计算;分类器的训练;获取待检测水果的温度数据;水果损伤检测结果的获得。本发明通过热电堆传感器采集水果样品不同感兴趣区域的温度数据;对温度数据进行压缩和傅里叶变换分析,提取曲线峰值作为特征值;将特征值输入最小二乘法线性分类器进行分类训练,从而实现对待测水果损伤的检测。
-
公开(公告)号:CN117115660A
公开(公告)日:2023-11-24
申请号:CN202311239981.0
申请日:2023-09-25
Applicant: 安徽大学
IPC: G06V20/10 , G06V20/68 , G06V10/22 , G06V10/764 , G06V10/774 , G06V10/82 , G06N3/0464 , G06N3/08
Abstract: 本发明涉及一种结合检测网络和点回归的葡萄图像采摘点位置单阶段定位方法,与现有技术相比解决了难以定位出葡萄图像中茎位置的缺陷。本发明包括以下步骤:葡萄图像的获取及预处理;葡萄采摘点定位模型的构建;葡萄采摘点定位模型的训练;待定位葡萄图像的获取;葡萄图像采摘点位置的定位。本发明使用了具有点回归的检测网络来检测葡萄茎并同时确定采摘点,获得了良好而准确的采摘点定位,其简单性、可部署性和可操作性远远优于两阶段方法,为葡萄果实采摘提供了实用可靠的技术支撑。
-
-
-