结合PVT和U-Net深度学习的道路缺陷检测方法

    公开(公告)号:CN118229681B

    公开(公告)日:2024-07-30

    申请号:CN202410637905.3

    申请日:2024-05-22

    Applicant: 安徽大学

    Abstract: 本发明公开了一种结合PVT和U‑Net深度学习的道路缺陷检测方法,首先获取原始探地雷达数据集,然后进行数据的预处理,构建标准化的探地雷达图像数据集;然后构建结合PVT和U‑Net的深度学习网络、添加符号距离函数的损失函数,基于损失函数、采用深度学习网络对探地雷达图像数据集中的训练集进行训练,得到训练好的深度学习网络;最后采用训练好的深度学习网络对探地雷达图像数据集中的测试集进行检测,提取到道路缺陷特征。本发明采用结合PVT和U‑Net的深度学习网络,能更好的提取和分割出道路的缺陷特征,并采用添加符号距离函数的损失函数进行训练,有效增强前景背景区域特征的可分性,提高了图像边缘部分的预测精度。

    结合PVT和U-Net深度学习的道路缺陷检测方法

    公开(公告)号:CN118229681A

    公开(公告)日:2024-06-21

    申请号:CN202410637905.3

    申请日:2024-05-22

    Applicant: 安徽大学

    Abstract: 本发明公开了一种结合PVT和U‑Net深度学习的道路缺陷检测方法,首先获取原始探地雷达数据集,然后进行数据的预处理,构建标准化的探地雷达图像数据集;然后构建结合PVT和U‑Net的深度学习网络、添加符号距离函数的损失函数,基于损失函数、采用深度学习网络对探地雷达图像数据集中的训练集进行训练,得到训练好的深度学习网络;最后采用训练好的深度学习网络对探地雷达图像数据集中的测试集进行检测,提取到道路缺陷特征。本发明采用结合PVT和U‑Net的深度学习网络,能更好的提取和分割出道路的缺陷特征,并采用添加符号距离函数的损失函数进行训练,有效增强前景背景区域特征的可分性,提高了图像边缘部分的预测精度。

Patent Agency Ranking