基于多尺度生成对抗网络的大气湍流图像复原方法及系统

    公开(公告)号:CN117611456A

    公开(公告)日:2024-02-27

    申请号:CN202311725750.0

    申请日:2023-12-14

    Abstract: 本发明公开了基于多尺度生成对抗网络的大气湍流图像复原方法及系统,涉及大气湍流退化图像复原技术领域;该方法包括如下步骤:建立大气湍流退化图像数据集;以DeblurGAN网络模型作为基础网络模型利用数据集进行训练,得到大气湍流图像复原网络模型,大气湍流图像复原网络模型包括生成器和判别器;在生成器的网络结构中引入级联空洞卷积模块,且引入注意力机制模块,用于对生成器进行优化;损失函数包括对抗损失项和内容损失项,对生成器输出的复原图像利用损失函数作为图像去模糊的正则约束,用于修复生成器输出的复原图像的图像边缘扭曲现象;验证大气湍流图像复原模型。本发明解决了图像边缘细节恢复不足以及鲁棒性不高的问题,具有更好的视觉效果。

    一种高光谱图像的分类方法及系统

    公开(公告)号:CN119942248A

    公开(公告)日:2025-05-06

    申请号:CN202510428216.6

    申请日:2025-04-08

    Abstract: 本发明公开了一种高光谱图像的分类方法及系统,涉及高光谱图像分类技术领域,包括:将高光谱图像数据集经特征提取获取多尺度特征;使用ADMM构建联合优化目标函数,作为联合优化模型;将字典矩阵设置为可训练参数,以端到端方式隐式学习动态字典;将多尺度特征输入联合优化模型迭代求解各变量;采用模态分解策略对辅助变量Z进行多维解构,并通过基于Mamba状态空间模型的双分支先验网络优化辅助变量#imgabs0#的求解;联合优化模型输出稀疏系数矩阵与隐式字典特征;将稀疏系数特征与字典特征进行拼接,获得融合特征;将融合特征输入分类器,获得高光谱图像的分类结果。本发明能提升高光谱数据分类结果的准确性。

    一种基于测试时间自适应的图像分类方法

    公开(公告)号:CN119360123A

    公开(公告)日:2025-01-24

    申请号:CN202411650652.X

    申请日:2024-11-19

    Abstract: 本发明公开了一种基于测试时间自适应的图像分类方法,涉及计算机视觉技术领域,具体包括:步骤1:对测试图像数据集合进行破坏性转换;步骤2:通过预训练的分类器f得到伪标签概率分布,构建伪标签概率差异损失;步骤3:计算伪标签概率差异分数,根据伪标签概率差异分数筛选测试图像集合,步骤4:将筛选后的图像输入能量模型,从而得到能量分数和概率密度;步骤5:构建能量优化目标;步骤6:通过伪标签概率差异损失和能量优化目标构建联合优化目标,用于训练测试时间自适应模型,以实现图像分类。本发明将伪标签概率差异引入能量模型,分别从能量和形状信息两个角度对测试数据进行感知,提高了模型在测试图像集合上的分类准确度。

    基于深度学习的大豆豆荚考种方法、系统及装置

    公开(公告)号:CN116434066B

    公开(公告)日:2023-10-13

    申请号:CN202310424584.4

    申请日:2023-04-17

    Abstract: 本发明公开了基于深度学习的大豆豆荚考种方法、系统及装置,涉及人工智能机器视觉考种技术领域;该方法包括以下步骤:采集不同拍摄环境下的大豆豆荚原始RGB图像;根据大豆豆荚原始RGB图像中每个豆荚中实粒和秕粒的个数情况进行框选分类标记建立原始图像数据集;构建融合注意力模块的改进YOLOX网络模型,将原始图像数据集输入至改进YOLOX网络模型进行训练;测试改进YOLOX网络模型,更新改进YOLOX网络模型的学习参数;对存在多种特征的豆荚计数结果进行修正;利用已更新的改进YOLOX网络模型对待考种的大豆豆荚进行检测。本发明能够将豆荚中的实粒和秕粒区分,且在多种拍摄环境下快速准确地对豆荚进行检测,提高检测和计数的准确率和效率。

    一种基于多方向动态路由的高光谱图像分类方法

    公开(公告)号:CN118674997A

    公开(公告)日:2024-09-20

    申请号:CN202410948614.6

    申请日:2024-07-16

    Abstract: 本发明公开了一种基于多方向动态路由的高光谱图像分类方法,包括:1、获取高光谱图像公共数据集;2、对数据集进行降维处理及初步特征提取,并利用Cell模块构建多方向动态路由网络,取初始化层输出的特征作为网络输入,经由网络处理得到具有判别性的特征,将其输入分类器中得到地物类别预测概率;3、构建多类别交叉熵损失函数,利用梯度下降法对网络进行训练,同时计算损失函数以更新网络参数,直至损失函数收敛时停止训练,从而得到最优模型,完成高光谱图像精确分类。本发明能提高高光谱图像分类的精度,减少边界误分现象,从而能获得优越的分类结果。

    基于深度学习的大豆豆荚考种方法、系统及装置

    公开(公告)号:CN116434066A

    公开(公告)日:2023-07-14

    申请号:CN202310424584.4

    申请日:2023-04-17

    Abstract: 本发明公开了基于深度学习的大豆豆荚考种方法、系统及装置,涉及人工智能机器视觉考种技术领域;该方法包括以下步骤:采集不同拍摄环境下的大豆豆荚原始RGB图像;根据大豆豆荚原始RGB图像中每个豆荚中实粒和秕粒的个数情况进行框选分类标记建立原始图像数据集;构建融合注意力模块的改进YOLOX网络模型,将原始图像数据集输入至改进YOLOX网络模型进行训练;测试改进YOLOX网络模型,更新改进YOLOX网络模型的学习参数;对存在多种特征的豆荚计数结果进行修正;利用已更新的改进YOLOX网络模型对待考种的大豆豆荚进行检测。本发明能够将豆荚中的实粒和秕粒区分,且在多种拍摄环境下快速准确地对豆荚进行检测,提高检测和计数的准确率和效率。

    一种融合知识图谱与图像识别的垃圾分类方法

    公开(公告)号:CN117456279B

    公开(公告)日:2025-04-22

    申请号:CN202311623115.1

    申请日:2023-11-30

    Abstract: 本发明公开了一种融合知识图谱与图像识别的垃圾分类方法,包括:1、构建知识图谱,捕捉垃圾实体与种类之间的关系2、利用Ac自动机树,提取问题中的垃圾实体名;3、利用TransR模型提取垃圾实体的文本向量;4、设定疑问词列表,提取问题中的疑问词,根据疑问词是否在疑问词列表中和问题中是否有垃圾实体名来对问题进行分类;5、针对不同类型的问题,返回不同的答案模板;6、构建图像识别模型,获取垃圾图片的向量;7、将垃圾实体的文本向量和图片向量,结合注意力机制将相互对应的向量进行拼接,得到垃圾实体的融合向量后,最终返回垃圾的类别。本发明融合了知识图谱和图像识别,能更稳定、更便捷、更高效的实现垃圾分类。

    一种融合知识图谱与图像识别的垃圾分类方法

    公开(公告)号:CN117456279A

    公开(公告)日:2024-01-26

    申请号:CN202311623115.1

    申请日:2023-11-30

    Abstract: 本发明公开了一种融合知识图谱与图像识别的垃圾分类方法,包括:1、构建知识图谱,捕捉垃圾实体与种类之间的关系2、利用Ac自动机树,提取问题中的垃圾实体名;3、利用TransR模型提取垃圾实体的文本向量;4、设定疑问词列表,提取问题中的疑问词,根据疑问词是否在疑问词列表中和问题中是否有垃圾实体名来对问题进行分类;5、针对不同类型的问题,返回不同的答案模板;6、构建图像识别模型,获取垃圾图片的向量;7、将垃圾实体的文本向量和图片向量,结合注意力机制将相互对应的向量进行拼接,得到垃圾实体的融合向量后,最终返回垃圾的类别。本发明融合了知识图谱和图像识别,能更稳定、更便捷、更高效的实现垃圾分类。

Patent Agency Ranking