-
公开(公告)号:CN118823484A
公开(公告)日:2024-10-22
申请号:CN202411097087.9
申请日:2024-08-12
Applicant: 天津职业技术师范大学(中国职业培训指导教师进修中心)
IPC: G06V10/764 , G06V10/80 , G06V10/82 , G06N3/0464 , G06N3/08
Abstract: 本发明公开了基于脉冲神经网络的时空域特征动态目标识别方法,包括:基于卷积神经网络对特征图像进行插值处理与融合处理,使各层特征图像之间能够跨层融合;在卷积神经网络中引入空间注意力机制,增强空间维度特征,对特征图像进行多次压缩处理并与特征提取网络结合建立融合层;将特征图像转换成脉冲信息,基于脉冲神经网络获取卷积层的输出特征图像,在池化层对输出特征图像进行池化操作;基于脉冲神经网络对输出特征图像再次进行处理并拼接所有输出特征图获取融合特征图以输出权值参数,执行动态目标识别任务。本发明提供的方法能够结合卷积神经网络和脉冲神经网络的优势,实现高速时变信息特征提取和准确分类。
-
公开(公告)号:CN112244875A
公开(公告)日:2021-01-22
申请号:CN202011248815.3
申请日:2020-11-10
Applicant: 天津职业技术师范大学(中国职业培训指导教师进修中心)
Abstract: 本发明公开了一种基于脑电与深度学习的精神分裂症探测方法,包括提取测试样本、将所得测试样本转换为测试输入图像、将所得测试输入图像输入到深度学习模型中,并且进行鲁棒性特征提取得到鲁棒性特征、将提取到的鲁棒性特征输入到极限学习机分类器中,进行精神分裂症的探测并输出探测结果。其深度学习模型由卷积神经网络和长短期记忆神经网络构成。卷积神经网络可以利用卷积层进行特征提取,不需要反复寻找合适的特征,节省了大量的时间。同时,利用卷积层进行特征提取,可以通过改变卷积核的大小来提高对精神分裂症探测的准确度,操作简便,速度更快,并且可使准确度高达90%以上。
-
公开(公告)号:CN112790774A
公开(公告)日:2021-05-14
申请号:CN202110182451.1
申请日:2021-02-07
Applicant: 天津职业技术师范大学(中国职业培训指导教师进修中心)
Abstract: 本发明公开了一种原始脑电深度学习分类方法,包括提取测试样本、将所得测试样本转换为测试输入图像、将所得测试输入图像输入到深度学习模型中,并且进行鲁棒性特征提取得到鲁棒性特征、将提取到的鲁棒性特征输入到极限学习机分类器中进行分类分析。其深度学习模型由卷积神经网络和长短期记忆神经网络构成。卷积神经网络可以利用卷积层进行特征提取,不需要反复寻找合适的特征,节省了大量的时间。同时,利用卷积层进行特征提取,可以通过改变卷积核的大小来提高对脑电分析的准确度,操作简便,速度更快,并且可使准确度高达90%以上。
-
-