-
公开(公告)号:CN105956532A
公开(公告)日:2016-09-21
申请号:CN201610261849.3
申请日:2016-04-25
Applicant: 大连理工大学
CPC classification number: G06K9/00785 , G06K9/6267 , G06N3/08
Abstract: 本发明公开了一种交通场景多目标分类方法,包括以下步骤:提取基于多尺度卷积神经网络的隐性特征;获取最优覆盖分割树。本发明在实现交通场景分类的过程中,采用多尺度卷积神经网络,通过对原始图像在不同尺度上有效提取具有不变性的优秀隐性特征,相比于单一尺度的卷积神经网络,实现了图像更加丰富有效特征信息的获取。本发明通过将卷积神经网络提取的有效信息与图像的原始分割树结合,形成最优纯度代价树,并进行最优纯度的覆盖,实现了获得更加清晰的目标轮廓,增加了分类的准确性。本发明通过将RGB‑D作为卷积神经网络输入,相比传统RGB卷积神经网络输入,训练的特征增加了深度信息,实现了输入图像更加精确的分类。
-
公开(公告)号:CN105930830B
公开(公告)日:2019-07-16
申请号:CN201610330600.3
申请日:2016-05-18
Applicant: 大连理工大学
Abstract: 本发明公开了一种基于卷积神经网络的路面交通标志识别方法,包括以下步骤:图像采集和预处理;卷积神经网络结构的设计及训练。本发明采用V‑视差法从原始图像中获取路面区域,能够降低非路面干扰造成的影响,使得提取路面区域的精度提高。本发明采用俯视图重构路面区域,将视觉图像里由于视角的原因,呈现出的不平行的线,重构为近似的平行线,更有利于路面交通标志的识别,提高了对视角倾斜的适应能力。本发明采用卷积神经网络这一深度学习方法,能够从大量的训练样本中提取到反映数据本质的隐性特征。相比于浅层学习分类器,它具有更高的学习效率和识别精度。
-
公开(公告)号:CN105956532B
公开(公告)日:2019-05-21
申请号:CN201610261849.3
申请日:2016-04-25
Applicant: 大连理工大学
Abstract: 本发明公开了一种交通场景多目标分类方法,包括以下步骤:提取基于多尺度卷积神经网络的隐性特征;获取最优覆盖分割树。本发明在实现交通场景分类的过程中,采用多尺度卷积神经网络,通过对原始图像在不同尺度上有效提取具有不变性的优秀隐性特征,相比于单一尺度的卷积神经网络,实现了图像更加丰富有效特征信息的获取。本发明通过将卷积神经网络提取的有效信息与图像的原始分割树结合,形成最优纯度代价树,并进行最优纯度的覆盖,实现了获得更加清晰的目标轮廓,增加了分类的准确性。本发明通过将RGB‑D作为卷积神经网络输入,相比传统RGB卷积神经网络输入,训练的特征增加了深度信息,实现了输入图像更加精确的分类。
-
公开(公告)号:CN105975915A
公开(公告)日:2016-09-28
申请号:CN201610273462.X
申请日:2016-04-28
Applicant: 大连理工大学
CPC classification number: G06K9/00825 , G06N3/084
Abstract: 本发明公开了一种基于多任务卷积神经网络的车辆多参数识别方法,包括以下步骤:卷积神经网络结构的设计及训练;基于卷积神经网络的车辆参数识别。本发明采用卷积神经网络,使原始数据通过简单而非线性的模型转变成为更抽象的高层表达。因此,卷积神经网络能够从大量的训练样本中学习到反映待识别目标本质的隐性特征;相比浅层学习分类器,具有更强的可扩展性,满足交通环境中的多类目标的识别,识别精度也更高。尤其应用于复杂的交通环境当中,本发明体现出很强的抗环境干扰能力。本发明将卷积神经网络的应用扩展到车辆的多参数识别,以训练好的卷积神经网络识别图像中车辆的类型特征、位姿信息及车灯状态,增强了车辆潜在行为的可预知性。
-
公开(公告)号:CN105975915B
公开(公告)日:2019-05-21
申请号:CN201610273462.X
申请日:2016-04-28
Applicant: 大连理工大学
Abstract: 本发明公开了一种基于多任务卷积神经网络的车辆多参数识别方法,包括以下步骤:卷积神经网络结构的设计及训练;基于卷积神经网络的车辆参数识别。本发明采用卷积神经网络,使原始数据通过简单而非线性的模型转变成为更抽象的高层表达。因此,卷积神经网络能够从大量的训练样本中学习到反映待识别目标本质的隐性特征;相比浅层学习分类器,具有更强的可扩展性,满足交通环境中的多类目标的识别,识别精度也更高。尤其应用于复杂的交通环境当中,本发明体现出很强的抗环境干扰能力。本发明将卷积神经网络的应用扩展到车辆的多参数识别,以训练好的卷积神经网络识别图像中车辆的类型特征、位姿信息及车灯状态,增强了车辆潜在行为的可预知性。
-
公开(公告)号:CN105930830A
公开(公告)日:2016-09-07
申请号:CN201610330600.3
申请日:2016-05-18
Applicant: 大连理工大学
CPC classification number: G06K9/00818 , G06K9/00785 , G06K9/6265 , G06N3/02
Abstract: 本发明公开了一种基于卷积神经网络的路面交通标志识别方法,包括以下步骤:图像采集和预处理;卷积神经网络结构的设计及训练。本发明采用V‑视差法从原始图像中获取路面区域,能够降低非路面干扰造成的影响,使得提取路面区域的精度提高。本发明采用俯视图重构路面区域,将视觉图像里由于视角的原因,呈现出的不平行的线,重构为近似的平行线,更有利于路面交通标志的识别,提高了对视角倾斜的适应能力。本发明采用卷积神经网络这一深度学习方法,能够从大量的训练样本中提取到反映数据本质的隐性特征。相比于浅层学习分类器,它具有更高的学习效率和识别精度。
-
-
-
-
-