-
公开(公告)号:CN109856307A
公开(公告)日:2019-06-07
申请号:CN201910238318.6
申请日:2019-03-27
Applicant: 大连理工大学
Abstract: 本发明提供一种代谢组分子变量综合筛选技术,属于代谢组学数据分析技术领域。本发明中考量了分子对变量上多种可能的样本分布模式,对分子对变量的区分能力进行了综合的评价,并使用与分子对变量相同的指标,有机融合了单变量评价过程,将所有单变量和对变量的评分进行排序,选择得分最高的对变量及其分布模式或单变量进行后续靶向代谢分析。该方法的核心技术基于代谢组学的实际特点,对对变量上多种可能样本分布模式进行了多角度分析与综合评价,挖掘了信息丰富的变量,对所选分子变量和分子对变量进行分类测试,分类性能优越,故本发明为代谢组学数据的前期分析处理提供了切实有效的方法,具有较强的应用价值。
-
公开(公告)号:CN109856307B
公开(公告)日:2021-04-16
申请号:CN201910238318.6
申请日:2019-03-27
Applicant: 大连理工大学
Abstract: 本发明提供一种代谢组分子变量综合筛选技术,属于代谢组学数据分析技术领域。本发明中考量了分子对变量上多种可能的样本分布模式,对分子对变量的区分能力进行了综合的评价,并使用与分子对变量相同的指标,有机融合了单变量评价过程,将所有单变量和对变量的评分进行排序,选择得分最高的对变量及其分布模式或单变量进行后续靶向代谢分析。该方法的核心技术基于代谢组学的实际特点,对对变量上多种可能样本分布模式进行了多角度分析与综合评价,挖掘了信息丰富的变量,对所选分子变量和分子对变量进行分类测试,分类性能优越,故本发明为代谢组学数据的前期分析处理提供了切实有效的方法,具有较强的应用价值。
-
公开(公告)号:CN110890130A
公开(公告)日:2020-03-17
申请号:CN201911219855.2
申请日:2019-12-03
Applicant: 大连理工大学
IPC: G16B20/20
Abstract: 基于多类型关系的生物网络模块标志物识别方法,属于组学数据分析技术领域。发明结合当前组学数据变量多,噪音多,生物体内变量以各种通路相互关联,变量之间关系复杂多样等实际特点,构建成对变量的多种组合变量,使用统一指标,对成对分子的各个组合进行类间区分能力评价,使用评价指标构建网络,并使用贪婪搜索技术搜索网络模块。有助于组学数据研究者迅速从基因组、代谢组等组学数据中识别具有强区分能力的变量模块,来进行后续针对分子功能,调控过程的定性定量研究,是一种基于多类型关系的生物网络模块标志物识别方法。
-
公开(公告)号:CN110890130B
公开(公告)日:2022-09-20
申请号:CN201911219855.2
申请日:2019-12-03
Applicant: 大连理工大学
IPC: G16B20/20
Abstract: 基于多类型关系的生物网络模块标志物识别方法,属于组学数据分析技术领域。发明结合当前组学数据变量多,噪音多,生物体内变量以各种通路相互关联,变量之间关系复杂多样等实际特点,构建成对变量的多种组合变量,使用统一指标,对成对分子的各个组合进行类间区分能力评价,使用评价指标构建网络,并使用贪婪搜索技术搜索网络模块。有助于组学数据研究者迅速从基因组、代谢组等组学数据中识别具有强区分能力的变量模块,来进行后续针对分子功能,调控过程的定性定量研究,是一种基于多类型关系的生物网络模块标志物识别方法。
-
-
-